• Title/Summary/Keyword: Mine-waste field

Search Result 24, Processing Time 0.02 seconds

Study on the Contamination Characteristics of Pollutants at Various type of Abandoned Metal Mines (폐금속 광산의 유형별 오염특성에 관한 연구)

  • Lee, Jong-Deuk;Kim, Tae Dong;Kim, Sun Gu;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.93-108
    • /
    • 2013
  • This study is aimed to prepare the effective detail survey methods(Phase II) of abandoned metal mines through the contamination assessment for mine types and facilities in the abandoned metal mine areas. The study sites of 12 abandoned mines are located in Gyeonggi-do and Gangwon-do and those were chosen among 310 sites that the Phase II survey was conducted from 2007 to 2009 after considering the results of Phase I for abandoned mines scattered all over the country. 12 study sites were classified into four types; Type I sites only have pit mouth. Type II sites have pit mouth and mine-waste field. Type III sites have pit mouth and tailing sorting field. Type IV sites have pit mouth, tailing sorting field and concentrator(s). In forest land, paddy soil and farm land of Type I, As and Cd were showed average concentration, and Cu and Pb were high on the pit mouth area in one mines where the pit mouth was developed within 500 m. In the mines of Type II, Cu and Pb were showed average concentration too, but As and Cd were slightly high in pit mouth and mine-waste field. The mines of Type III which had grinding particle process through physical separation milling or hitting showed similar tendency with Type II. However, mines of Type IV pit mouth, mine-waste field and showed various results depending on defining the contamination sources. For example, if contamination source was pit mouth, the mixed results of Type I, II, II were showed. In tailing sorting field which was regarded as the most important source and having high mobility, however, if there were no facilities or it was difficult to access directly, field sampling was missed occasionally during phase I and phase II survey. For that reason, the assessment for tailing sorting field is missed and it leads to completely different results. In the areas of Type I mines, the concentration of heavy metals exceeded precautionary standards of soil contamination or not within 1,000 meters of pit mouth. Nickel(Ni) was the largest factor of the heavy metal contamination in this type. The heavy metals except Arsenic(As) were shown high levels of concentration in Type II areas, where pit mouth and mine-waste field were operated for making powder in upriver region; therefore, to the areas in the vicinity of midstream and downstream, the high content of heavy metals were shown. The tendency of high level of heavy metals and toxic materials contained in flotation agent used during sorting process were found in soil around sorting and tailing field. In the abandoned-pit-mouth area, drygrinding area and tailing sorting field area, the content of Cupper(Cu) and Zinc(Zn) were higher than other areas. Also, the contaminated area were larger than mine reclamation area(2,000 m) and the location of tailing sorting field was one of the important factors to estimate contaminated area.

Fly Ash Application for Reduction of Acid Mine Drainage (AMD) as Runoff and Leachate Released from Mine Waste Disposal Sites

  • Oh, Se Jin;Moon, Sung Woo;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • Mine wastes such as acid mine drainage (AMD) can cause the detrimental effects on surrounding environment, thereby eventually threatening human health. Main objective of this study was to evaluate the neutralizing effect of fly ash (FA) as a stabilizing material AMD. Field plot was constructed in a coal waste depot which has caused aluminium-whitening adjacent to the stream. Different mixing ratios of FA were applied on a top of the soil, and then the physicochemical properties of runoff and soil were monitored. Constructed plots were as following: control (mine waste only (W)), mine waste + 20% ($w\;w^{-1}$)of FA (WC20M), mine waste + 40% ($w\;w^{-1}$)of FA (WC40M), and WC40M dressed with a fresh soil at the top (WC40MD). Result showed that initial pH of runoff in control was 5.09 while that in WC40M (7.81) was significantly increased. For a plot treated with WC40M, the concentration of Al in runoff was decreased to $0.22mg\;L^{-1}$ compared to the W as the control ($4.85mg\;L^{-1}$). Moreover, the concentration of Fe was also decreased to less than half at the WC40M compared to the control. Application of FA can be useful for neutralizing AMD and possibly minimizing adverse effect of AMD in mining area.

Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation (폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성)

  • Na, Choon-Ki;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF

Geochemical Approaches for Investigation and Assessment of Heavy Metal Contamination in Abandoned Mine Sites (폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법)

  • 이평구;조호영;염승준
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.35-48
    • /
    • 2004
  • This paper provides a comprehensive overview of geochemical approaches for investigating and assessing heavy metal contamination in abandoned mine sites. Major sources of contaminants at the abandoned mine sites are mine water, waste rocks, tailings, and chemicals used in beneficiation and mineral processing. Soil, sediment, surface and ground water, and ecological system can be contaminated by heavy metals, which are transported due to erosion of mine waste piles, discharge of acid mine drainage and processed water, and dispersion of dust from waste rocks and tailings. The abandoned mine sites should be characterized using various methods including chemical analysis, mineralogical analysis, acid generation prediction tests, leaching/extraction tests, and field tests. Potential and practical environmental impacts from the abandoned mines should be assessed based on the site characterization.

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

Priority Assessment of Leachate Management of Reclaimed Mine Waste Dump Sites (광산폐기물 적치장 침출수의 사후관리 우선순위 평가)

  • Park, Chang Koo;Yoon, Kyung Wook;Kim, Jung Wook;Jung, Myung Chae;Lee, Jin Soo;Ji, Won Hyun;Lee, Joon Hak
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.771-779
    • /
    • 2020
  • This study was performed to develop a priority list for post-managements of leachates from 64 mine waste dump sites in Korea. For this, leachate quality, leachate quantity, and other factors were considered as evaluation criteria and the weights of 10 subfactors were calculated using Analytic Hierarchical Process (AHP) based on a survey from 20 experts in the field of mining environment. Calculated weights were 0.769, 0.147 and 0.084 for leachate quality, leachate quantity, and others, respectively, indicating that experts consider leachate quality as most important. Based on this approach, we classified the 64 mine waste dump sites into five grades from Grade I to Grade V. Ten were classified as Grade I, 1 as Grade II, 1 as Grade III, 33 as Grade IV, and 19 as Grade V.

A Study on the Developement of Soil Geochemical Exploration Method for Metal Ore Deposits Affected by Agricultural Activity (농경작업 영향지역의 금속광상에 대한 토양 지구화학 탐사법 개발 연구)

  • Kim, Oak-Bae;Lee, Moo-Sung
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 1992
  • In order to study the optimum depth for the soil geochemical exploration in the area which is affected by agricultural activities and waste disposal of metal mine, the soil samples were sampled from the B layer of residual soil and vertical 7 layers up to 250 cm in the rice field and 3 layers up to 90 cm in the ordinary field. They were analyzed for Au, As, Cu, Pb and Zn by AAS, AAS-graphite furnace and ICP. To investigate the proper depth for the soil sampling in the contaminated area, the data were treated statistically by applying correlation coefficient, factor analysis and trend analysis. It is conclude that soil geochemical exploration method could be applied in the farm-land and a little contaminated area. The optimum depth of soil sampling is 60 cm in the ordinary field, and 150~200 cm in the rice field. Soil sampling in the area of a huge mine waste disposal is not recommendable. Plotting of geochemical map with factor scores as a input data shows a clear pattern compared with the map of indicater element such as As or Au. The second or third degree trend surface analysis is effective in inferring the continuity of vein in the area where the outcrop is invisible.

  • PDF

Geochemical transport and water-sediment partitioning of heavy metals in acid mine drainage, Kwangyang Au-Ag mine area, Korea

  • Jung, Hun-Bok;Yun, Seong-Taek;Kwon, Jang-Soon;Lee, Pyeong-Koo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.409-412
    • /
    • 2003
  • Total extraction of stream sediments in the Kwangyang mine area shows their significant pollution with most trace metals such as Cr, Co, Fe, Pb, Cu, Ni, Zn and Cd, due to sulfide oxidation in waste dumps. Calculations of enrichment factor shows that Chonam-ri creek sediments are more severely contaminated than Sagok-ri sediments. Using the weak acid (0.1N HCl) extraction and sequential extraction techniques, the transport and sediment-water partitioning of heavy metals in mine drainage were examined for contaminated sediments in the Chonam-ri and Sagok-ri creeks of the Kwangyang Au-Ag mine area. Calculated distribution coefficient (Kd) generally decreases in the order of Pb $\geq$Al > Cu > Mn > Zn > Co > Ni $\geq$ Cd. Sequential extraction of Chonam-ri creek sediments shows that among non-residual fractions the Fe-Mn oxide fraction is most abundant for most of the metals. This indicates that precipitation of Fe hydroxides plays an important role in regulating heavy metal concentrations in water, as shown by field observations.

  • PDF

A Case Study of Mine Environmental Restoration using Coal Ash (발전회를 이용한 광산환경 복원사례 연구)

  • Yoo, Jong-Chan;Ji, Sang-Woo;Ahn, Ji-Whan;Kim, Chun-Sik;Shin, Hee-Young
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.80-88
    • /
    • 2017
  • Globally, there has been a lot of research related to recycling coal ash from power plant stations. This research is happening because there is a considerable shortage of sites for reclamation of increased coal ash every year. In addition, a variety of environmental pollutants have appeared because of mining activity. Abandoned coal mine, pits, and mine tailing piles caused pollutants to come to the surface resulting in serious damage for humans and the environment. Therefore in this study, we investigated whether or not coal ashes have the ability to prevent several environmental problems by mining in Korea and a manageable form recycling coal ashes. In overseas countries, there is a sufficient field of applicable cases where coal ash is used for neutralizing AMD (Acid Mine Drainage), covering of the waste materials, grouting, and soil amendments. However in Korea, since the coal ash is classified as a 'waste', there is an insufficient field applicable cases so far. Therefore it is necessary to establish a specific standard and management system for the utilization of coal ash based on the relevant precedent cases applied abroad in order to prevent environmental pollution caused by mining activity in Korea.