• Title/Summary/Keyword: Mine waste

Search Result 203, Processing Time 0.018 seconds

Technology Trends of Metal Recovery from Wastewater (폐수(廢水) 중(中) 유가금속(有價金屬) 회수기술(回收技術) 동향(動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.91-99
    • /
    • 2013
  • Steel industry which has been accomplishes the base of our country economy, automobile and electronic industry are taking charge of the role, whose electroplating is important. Large amount of wastewater and various metal salts, including hazardous materials was generated from the electroplating pre-treatment, plating, washing and post-plating. Currently, the general wastewater follows in the environmental law and neutralization after controlling, sludge where the various metal is mixed reclaims below multiple regulative and trust it is controlling. The sludge which includes the gas price metal reclaims in the field and trust it controls. a reclamation price of land it is insufficient but and the control expense holds plentifully and it loses the gas price metal which is valuable. Consequently, The research regarding to recover a gas price metal actively from this waste water, it is advanced. A new method to recover valuable metals from electroplating wastewater synthesis of metal sulfides using topical methods utilizing iron oxidizing bacteria, reagent of sulfides and solvent extraction using an organic solvent, such as the development of the law to recover these metals and metal sulfides of wastewater using selective recovery have been studied. By using these wastewater treatment method under frequency above 95%, it has been obtained the valuable metal from the wastewater, where the metal ion of Fe, Cu, Zn and Ni complexes was mixed. As we discuss the wastewater, which has been discharged from electroplating process, it is important and will be applied to the resources of metal in the urban mine.

Literature Review on Health Effect Surveys of Residents in Environmentally Contaminated Areas in South Korea from 1997 to 2021 (한국 환경오염 취약지역 주민 건강영향조사 문헌고찰(1997~2021))

  • Kyung-Hwa Choi;Sujung Kim;Hyun A Jang;Dahee Han;Ho-Jang Kwon;Yong Min Cho
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.3
    • /
    • pp.134-148
    • /
    • 2023
  • Background: The conducting of health effect surveys (HESs) in environmentally contaminated vulnerable areas (ECVAs) by the central and local governments has been increasing apace with the increase in demand for HESs since the Environmental Health Act was enacted in South Korea in 2008. Objectives: This study aimed to review the HESs of residents in ECVAs conducted in South Korea. Methods: An analysis was performed on 125 reports obtained from the Environment Digital Library, PRISM, and local government websites after selecting from 803 projects obtained as ECVAs from the Korea ON-Line E-Procurement System (1997~2021), National Institute Environment Research (2000~2021), and Korea Environmental Industry and Technology Institute (2009~2021). The reports were classified by background (residents' demand, HES, and more), research design (cross-sectional study, cohort, ecological study, and panel), pollution source (abandoned metal mine (AMM), industrial complex (IC), and more), and assessment method of exposure and health effects. The survey area was converted into administrative district codes for geographical mapping. Results: There were 37, 34, 18, and 10 cases associated with AMM, IC, waste incinerators, and coal-fired power plants, respectively. Most of the studies conducted were cross-sectional studies and ecological studies. The proportion of epidemiological investigations by residents' demand showed an increase from 0.0% to 8.9% for the central government while decreasing from 16.7% to 14.3% for local governments after 2008 compared to before 2008. HESs increased at both the central and local government levels since 2014. For the evaluation method, 365 environmental hazards, 319 health outcomes, and 302 biological markers were investigated, with the most commonly investigated items being metals, cancer, and blood metals. Conclusions: HESs of residents in ECVAs in South Korea have been continuously developed both quantitatively and qualitatively. Future improvements are expected, and systematic review and classification of the HESs is warranted.

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF