• Title/Summary/Keyword: Mine pillar

Search Result 33, Processing Time 0.018 seconds

Numerical simulation of pressure relief in hard coal seam by water jet cutting

  • Song, Dazhao;Wang, Enyuan;Xu, Jiankun;Liu, Xiaofei;Shen, Rongxi;Xu, Wenquan
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.495-510
    • /
    • 2015
  • The applications of water jet cutting (WJC) in coal mine have progressed slowly. In this paper, we analyzed the possibility and reasonableness of WJC application to pressure relief in hard coal seam, simulated the distributive characteristics of stress and energy fields suffered by hard coal roadway wallrock and the internal relationships of the fields to the instability due to WJC (including horizontal radial slot and vertical annular slot) on roadway wallrock. The results showed that: (1) WJC can unload hard coal seam effectively by inducing stress release and energy dissipation in coal mass near its slots; its annular slots also can block or weaken stress and energy transfer in coal mass; (2) the two slots may cause "the beam structure" and "the small pillar skeleton", and "the layered energy reservoir structure", respectively, which lead to the increase in stress concentration and energy accumulation in coal element mass near the slots; (3) the reasonable design and optimization of slots' positions and their combination not only can significantly reduce the scope of stress concentration and energy accumulation, but also destroy coal mass structure on a larger scale to force stress to transfer deeper coal mass.

Influence of Sulfate on the Early Hydration in the Solidification of Lime-tailings (소석회-광물찌꺼기 고형화의 초기 수화에 미치는 황산염의 영향)

  • Lee, Hyun-Cheol;Min, Kyoung-Won;Yoo, Hwan-Geun
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.535-544
    • /
    • 2013
  • Influence of sulfate on the early hydration in the solidification treatment of abandoned mine tailings was characterized. Solidified specimens using hydrated lime as a binder were prepared with various amounts of added $Na_2SO_4$ and different curing days. Unconfined compressive strength measurement, heavy metal leaching test, XRD analysis were performed after 7-, 14- and 28-days curing. According to curing days strength of solidified specimens using only distilled water increased but those with addition of $Na_2SO_4$ decreased. External cracks of specimens developed definitely with increasing $Na_2SO_4$ concentration and curing days. Concentrations of Cu, Cd, Zn, and As in the leached solutions from solidified specimens decreased significantly but Pb was leached readily in cases of hydrated lime dosage more than 10 wt%. Gypsum and $MgSO_4$ were identified in the cracked solidified specimens by XRD analysis, and pillar-shaped crystals of SEM image were identified as gypsum in reference with EDS analysis. Crystallization of sulfate in the process of lime-tailing solidification caused cracking, which should be supplemented for solidification treatment of highly sulfur-contained tailing.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.