• Title/Summary/Keyword: Mine deposits

Search Result 186, Processing Time 0.028 seconds

Geochemistry of Ogbang Tungsten Deposits, Southern Korea (옥방중석광상(玉房重石鑛床)의 지구화학(地球化學))

  • Kim, Sabng Yup
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.53-71
    • /
    • 1986
  • Detailed studies of regional geology and geochemistry of the tungsten mineralisation of Ogbang mine were carried out; in particular geochemical trends of major and trace elements of different lithological units, in comparison with those of the Sangdong area, together with igneous plutons in the area. The Ogbang deposit is in a pegmatitic association localised only in amphibolites whilst pegmatites in adjacent schists and gneisses are barren. The tungsten is geochemically accompanied by increase of $K_2O$, $Na_2O$ and Rb, and depletion of Sr. The trend of Rb/Sr ratio to the type of mineralisation, in commonly seen in the mineralised granites of the world, suggests that the tungsten in the Ogbang pegmatites was supplied by hydrothermal processes which at the same time caused Rb enrichment and Sr depletion. These trend could be of use in the search for new ore bodies in common with those of mineralised granitic or pegmatitic host rocks. There is no evidence that the granites in the area have any genetic influence spacially and temporarily on the initial scheelite formation.

  • PDF

Stability Investigation of the Large Size Heap of Coal Associated Wastes (석탄광산에서 발생된 대규모 폐광석 더미에 대한 안정성 검토)

  • Kang Gi-Chun;Ahn Nam-Kyu;Oh Je-Ill;Kim Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.133-144
    • /
    • 2005
  • Stability investigations were conducted for the heap of coal associated wastes occurred from D mine located in Gang-Won Province from the geotechnical and environmental engineering aspect, and a countermeasure was also examined to increase the stability in this area. Quality of water flowed from the heap of coal associated wastes was identified as Am. Slope stability investigations were conducted with both circular failure analyses using SLOPILE program and planar failure analyses in cases of dry, rainy, and ordinary slopes. The results of circular failure analyses indicated that the factor of safety is 0.78 for rainy case. for planar failure analyses, the factor of safety decreases with increase the depth and reaches below 1 about 4m depth for rainy case. A retaining wall system with backfill using the recycled-concrete aggregates as a practical scheme was suggested to satisfy both demands: reducing Am generation, and enhancing slope stability in the deposits of coal associated wastes.

Study on Mineral Paragenesis in Sangdong Scheelite Deposit (상동광상(上東鑛床)의 광물공생(鑛物共生)에 관(關)한 연구(硏究))

  • Moon, Kun Ju
    • Economic and Environmental Geology
    • /
    • v.7 no.2
    • /
    • pp.45-62
    • /
    • 1974
  • Scheelite deposits in Sangdong mine are divided into three parallel vein groups, namely "Hanging-wall vein" which is located in the lowest parts of Pungchon Limestone, "Main vein" the most productive vein replaced a intercalated limestone bed in Myobong slate, "Foot-wall veins" a group of several thin veins parallel to main vein in Myobong slate. Besides the above, there are many productive quartz veins imbedded in the above veins and Myobong slate. Molybdenite and wolframite are barren in the former three veins group but associates only in quartz veins. Both main vein and foot-wall veins show regular zonal distribution, quartz rich zone in the center, hornblende rich zone surrounding the quartz rich zone and diopside rich zone in the further outside to the marginal parts of the vein. According to the distribution of three main minerals, quartz, hornblende and diopside the main vein can be divided into three zones which are in turn grouped into 7 subzones by distinct mineral paragenesis. They are summerized as follows: A. Diopside rich zone: 1. garnet-diopside.fl.uorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-plagioclase subzone B. Hornblende rich zone: 4. hornblende-diopside-quartz subzone 5. hornblende-quartz-chlorite subzone 6. hornblende-plagioclase-quartz.sphene subzone C. Quartz rich zone: 7. quartz-mica-chlorite subzone The foot-wall veins can similarly be divided by mineral paragenesis into 3 zones, 6 subzones as follows: A. diopside rich zone: 1. garnet-diopside-quartz.fl.uorite subzone 2. garnet-diopside-wollastonite subzone B. Hornblende rich zone: 3. quartz-hornblende-chlorite subzone 4. hornblende-plagioclase-quartz subzone 5. hornblende-diopside-quartz subzone C. Quartz rich zone: 6. quartz-mica subzone The hanging-wall vein is generally grouped into 9 subzones by the mineral paragenesis which show random distribution. They are as follows: 1. diopside-garnet-fluorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-hornblende-quartz-fluorite subzone 4. wollastonite-garnet-diopside subzone 5. hornblende-chlorite-quartz subzone 6. quartz-plagioclase-hornblende-sphene subzone 7. quartz-biotite subzone 8. quartz-calcite subzone 9. calcite-altered minerals subzone Among many composing minerals, garnet specially shows characteristic distribution and optical properties. Anisotropic and euhedral grossularite is generally distributed in the hanging wall vein and lower parts of the main vein, whereas isotropic and anhedral andradite in the upper parts of the main vein. Plagioclase (anorthite) and sphene are distributed ony near the foot-wall side of the aboveveins. wollastonite is a characteristic mineral in upper parts of the hang-wall vein. Molybdenite is distributed in the upper parts of quartz veins and wolframite in lower parts of quartz veins.

  • PDF

Occurrence and Geochemistry of Argyrodite, a Germanium-Bearing Mineral(Ag8GeS6), from the Weolyu Ag-Au Hydrothermal Vein Deposits (월류(月留) 은(銀)-금(金) 열수광상(熱水鑛床)에서 산출된 함(含) Ge 광물(鑛物)인 Argyrodite의 산상(産狀)과 지구화학(地球化學))

  • So, Chil-Sup;Yun, Seong-Taek;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 1993
  • Ag-Au vein ores from the Weolyu mine, Youngdong district, contain significant germanium (up to 145g/t, average 34.9g/t), in the form of argyrodite ($Ag_8GeS_6$). Mineral chemistries of argyrodite and its associated minerals were determined by electron probe microanalysis. Twenty eight elements in thirteen ore samples were analyzed using an ICP mass spectrometer. Argyrodite occurs in the paragenetically later mineral assemblage consisting of carbonates+quartz+native silver+argentite+Ag-sulfosalts, indicating that the germanium mineralization represents the culmination of a complex mineral sequence which includes early gold and late silver deposition. The mean formula of the argyrodite is $Ag_{7.90}\;(Ge_{0.76}Sn_{0.04})S_6$, with minor amounts of Cu, Fe, Sb, As, Sn, and Zn. The Weolyu argyrodite shows systematic substitutions of Ag by Cu, and of Ge by Sb. Chemical analyses of vein ores indicate that metals were precipitated in the order of $Fe{\rightarrow}Pb$, $Zn{\rightarrow}Cu{\rightarrow}Ag$, Sb, As, Ge. Germanium has a strong geochemical affmity with As and Sb, and Cu, Pb, Zn, Mo, and Sr show weak positive correlations with Ge. Germanium deposition at Weolyu was mainly a result of cooling of hydrothermal fluids (down to $175^{\circ}C{\sim}210^{\circ}C$, due to increasing involvement of cooler meteoric waters in the epithermal system.

  • PDF

Occurrences of Ilmenite Deposits in Hadong-Sancheong Area (하동-산청 티탄철석 광상의 광체배태양상)

  • Koh, Sang-Mo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.25-37
    • /
    • 2010
  • Ilmenite ore bodies are deposited within the Precambrian anorthosite body distributed in the Hadonggun and Sancheonggun district, Gyeongsangnamdo. This study tries to identify the occurrence of ilmenite ore body in titanium mine area distributed in Wheolheongri, Okjongmyon, Hadonggun and six mining concession areas (Danseong claim no. 64, 65, 74, 75, 84, 85) in Danseongmyon, Sancheonggun. Wheolheongri ilmenite ore body occurs as vein with about 10~50 m width and 100 m length and shows NNE strike and NW dipping. High grade ore with $TiO_2$ 20 wt% in this area is distributed in intercumulated anorthosite and is sheared and brecciated. Ilmenite occurring in this type is commonly associated with hornbelnde. Ilmenite ore bodies distributed in Danseonggun, Sancheongmyon are deposited in layered anorthosite. They occur as stratiform with variable width from several and several tens meters. Ilmenite which is disseminated in the matrix is sheared and elongated. This type shows generally low grade ($TiO_2$ 1.0~6.0 wt%). The ilmenite ore bodies occur as vein and stratiform, and the former shows higher grade than the latter.

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF

Fluid Inclusion Studies on the Wolak Tungsten-Molybdenum Deposits, Korea (월악 중석-몰리브덴 광상의 유체포유물 연구)

  • Lee, In Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.17-32
    • /
    • 1982
  • The Wolak tungsten-molybdenum deposits are tungsten-molybdenum bearing quartz veins which filled the fractures in Pre-Cambrian pebble-bearing calcareous hornfels, hornfels and Cretaceous granite. There are two vein groups in this mine, Dongsan vein group in the west and Kwangcheon vein group in the east. The ore minerals are wolframite, scheelite, molybdenite, native bismuth, bismuthinite, pyrite, arsenopyrite, chalcopyrite, cubanite, stannite, pyrrhotite, sphalerite, galena, marcasite, Pb-Bi sulfosalt and ilmenite. Quartz, calcite, beryl, fluorite, muscovite, rhodochrosite and siderite are gangue minerals. Fluid inclusion studies were carried out for the quartz, beryl, scheelite, early and late fluorite. Fluid inclusion studies reveal that liquid-gas inclusions are most common and occur in all of the minerals examined. Filling degree of the inclusions in the late fluorite is much higher than that of the inclusions in quartz and early fluorite. Liquid $CO_2$ bearing liquid-gas inclusions occur in quartz and early fluorite. Liquid, gas and solid phase inclusions occur in quartz, beryl and scheelite. Salinities of inclusions in quartz and beryl from Dongsan vein group range from 3.9 to 8.0, from 5.3 to 7.7 wt.% NaCl equivalent respectively. Salinities in the late fluorite range from 1.5 to 3.2 wt.% NaCl equivalent. In Kwangcheon vein group salinities range from 3.9 to 9.6 wt.% NaCl equivalent in quartz, from 2.8 to 7.3 wt.% NaCl equivalent in early fluorite, from 1.3 to 1.5 wt.% NaCl equivalent in late fluorite. Homogenization temperatures of inclusions range from $239^{\circ}$ to higher than $360^{\circ}C$ in quartz, over $360^{\circ}C$ in scheelite, from $288^{\circ}C$ to higher than $360^{\circ}C$ in beryl, and from $159^{\circ}$ to $202^{\circ}C$ in late fluorite of the Dongsan vein group. In Kwangcheon vein group, homo genization temperatures of inclusions range from $240^{\circ}C$ to higher than $360^{\circ}C$ in quartz and from $240^{\circ}$ to $328^{\circ}C$ in early fluorite. As a whole, in Dongsan and Kwangcheon vein groups it seems that there are no distinct differences in mineralogy, salinities and homogenization temperatures. No distinct variations in homogenization temperatures are revealed through about 300 m vertically in both district. The faint trend of increase in salinities in the lower level can be detected. The salinity, $CO_2$ content and the temperature of ore fluid were much higher in the early vein stage and then dropped off in the late stage of mineralization as represented by the quartz and fluorite inclusion data.

  • PDF

Applicability of plate tectonics to the post-late Cretaceous igneous activities and mineralization in the southern part of South Korea( I ) (한국남부(韓國南部)의 백악기말(白堊紀末) 이후(以後)의 화성활동(火成活動)과 광화작용(鑛化作用)에 대(對)한 판구조론(板構造論)의 적용성(適用性) 연구(硏究)( I ))

  • Min, Kyung Duck;Kim, Ok Joon;Yun, Suckew;Lee, Dai Sung;Joo, Sung Whan
    • Economic and Environmental Geology
    • /
    • v.15 no.3
    • /
    • pp.123-154
    • /
    • 1982
  • Petrochemical, K-Ar dating, Sand Rb/Sr isotopes, metallogenic zoning, paleomagnetic and geotectonic studies of the Gyongsang basin were carried out to examine applicability of plate tectonics to the post-late Cretaceous igneous activity and metallogeny in the southeastern part of Korean Peninsula. The results obtained are as follows: 1. Bulgugsa granitic rocks range from granite to adamellite, whose Q-Ab-Or triangular diagram indicates that the depth and pressure at which the magma consolidated increase from coast to inland varying from 6 km, 0.5-3.3 kb in the coastal area to 17 km, 0.5-10 kb in the inland area. 2. The volcanic rocks in Gyongsang basin range from andesitic to basaltic rocks, and the basaltic rocks are generally tholeiitic in the coastal area and alkali basalt in the inland area. 3. The volcanic rocks of the area have the initial ratio of Sr^{87}/Sr^{86} varying from 0.706 to 0.707 which suggests a continental origin; the ratio of Rb/Sr changing from 0.079-0.157 in the coastal area to 0.021-0.034 in the inland area suggests that the volcanism is getting younger toward coastal side, which may indicate a retreat in stage of differentiation if they were derived from a same magma. The K_2O/SiO_2 (60%) increases from about 1.0 in the coastal area to about 3.0 in the inland area, which may suggest an increase indepth of the Benioff zone, if existed, toward inland side. 4. The K-Ar ages of volcanic rocks were measured to be 79.4 m.y. near Daegu, and 61.7 m.y. near Busan indicating a southeastward decrease in age. The ages of plutonic rocks also decrease toward the same direction with 73 m.y. near Daegu, and 58 m.y. near Busan, so that the volcanism predated the plutonism by 6 m.y. in the continental interior and 4 m.y. along the coast. Such igneous activities provide a positive evidence for an applicability of plate tectonics to this area. 5. Sulfur isotope analyses of sulfide minerals from 8 mines revealed that these deposits were genetically connected with the spacially associated ingeous rocks showing relatively narrow range of ${\delta}^{34}S$ values (-0.9‰ to +7.5‰ except for +13.3 from Mulgum Mine). A sequence of metallogenic zones from the coast to the inland is delineated to be in the order of Fe-Cu zone, Cu-Pb-Zn zone, and W-Mo zone. A few porphyry type copper deposits are found in the Fe-Cu zone. These two facts enable the sequence to be comparable with that of Andean type in South America. 6. The VGP's of Cretaceous and post Cretaceous rocks from Korea are located near the ones($71^{\circ}N$, $180^{\circ}E$ and $90^{\circ}N$, $110^{\circ}E$) obtained from continents of northern hemisphere. This suggests that the Korean peninsula has been stable tectonically since Cretaceous, belonging to the Eurasian continent. 7. Different polar wandering path between Korean peninsula and Japanese islands delineates that there has been some relative movement between them. 8. The variational feature of declination of NRM toward northwestern inland side from southeastern extremity of Korean peninsula suggests that the age of rocks becomes older toward inland side. 9. The geological structure(mainly faults) and trends of lineaments interpreted from the Landsat imagery reveal that NNE-, NWW- and NEE-trends are predominant in the decreasing order of intensity. 10. The NNE-trending structures were originated by tensional and/or compressional forces, the directions of which were parallel and perpendicular respectively to the subduction boundary of the Kula plate during about 90 m.y. B.P. The NWW-trending structures were originated as shear fractures by the same compressional forces. The NEE-trending structures are considered to be priginated as tension fractures parallel to the subduction boundary of the Kula plate during about 70 m.y. B.P. when Japanese islands had drifted toward southeast leaving the Sea of Japan behind. It was clearly demonstrated by many authors that the drifting of Japanese islands was accompanied with a rotational movement of a clock-wise direction, so that it is inferred that subduction boundary had changed from NNE- to NEE-direction. A number of facts and features mentioned above provide a suite of positive evidences enabling application of plate tectonics to the late Cretaceous-early Tertiary igneous activity and metallogeny in the area. Synthesizing these facts, an arc-trench system of continental margin-type is adopted by reconstructing paleogeographic models for the evolution of Korean peninsula and Japan islands. The models involve an extention mechanism behind the are(proto-Japan), by which proto-Japan as of northeastern continuation of Gyongsang zone has been drifted rotationally toward southeast. The zone of igneous activity has also been migrated from the inland in late-Cretaceous to the peninsula margin and southwestern Japan in Tertiary.

  • PDF

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

Reflectance and Microhardness Characteristics of Sulfide Minerals from the Sambong Copper Mine (삼봉동광산산(三峰銅鑛山産) 유화광물(硫化鑛物)의 반사도(反射度)와 미경도(微硬度) 특성(特性))

  • Chi, Se Jung
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.115-139
    • /
    • 1984
  • The Cu-Pb-Zn-Ag hydrothermal vein-type deposits which comprise the Sambong mine occur within calc-alkaline volcanics of the Cretaceous Gyeongsang Basin. The ore mineralization took place through three distinct stages of quartz (I and II stages) and calcite veins (III stage) which fill the pre-existing fault breccia zones. These stages were separated in time by tectonic fracturing and brecciation events. The reflection variations of one mineral depending on mineralization sequence are considered to be resulted from variation in its chemical composition due to different physico-chemical conditions in the hydrothermal system. The reflection power of sphalerite increases with the content of Fe substituted for Zn. Reflectances of the sphalerite grain are lower on (111) than on (100) surface. The spectral profiles depend on the internal reflection color. Sphalerite, showing green, yellow and reddish brown internal reflection, have the highest reflection power at $544m{\mu}$ (green), $593m{\mu}$ (yellow) and $615m{\mu}$ (red) wavelength, respectively. Chalcopyrite is recognized as biaxial negative from the reflectivity data of randomly oriented grains measured at the most sensitivity at $544m{\mu}$. The microindentation hardness against the Fe content (wt. %) for the sphalerite increases to 8.05% Fe and then decreases toward 9.5% Fe content. Vickers hardness of the sphalerite is considerably higher on surface of (100) than on (111). The relationship between Vickers hardness and crystal orientation of the galena was determined to be $VHN_{(111)}$ > $VHN_{(210)}$ > $VHN_{(100)}$. The softer sulfides have the wider variation of the diagonal length in the indentation. Diagonal length in the indentation is pyrite

  • PDF