• Title/Summary/Keyword: Mine deposits

Search Result 186, Processing Time 0.028 seconds

Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea (장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

Gold-Silver Mineralization in the Kwangyang-Seungju Area (광양-승주지역 금은광상의 광화작용)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Yong;Ko, Chin Surk
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 1993
  • Gold-silver deposits in the Kwangyang-Seungju area are emplaced along $N4^{\circ}{\sim}10^{\circ}W$ to $N40^{\circ}{\sim}60^{\circ}W$ trending fissures and fault in Pre-cambrian Jirisan gneiss complex or Cretaceous diorite. Mineral constituents of the ore from above deposits are composed mainly of pyrite, arsenopyrite, pyrrhotite, magnetite, sphalerite, chalcopyrite, galena and minor amount of electrum, tetrahedrite, miargyrite, stannite, covellite and goethite. The gangue minerals are predominantly quartz and calcite. Gold minerals consist mostly of electrum with a 56.19~79.24 wt% Au and closely associated with pyrite, chalcopyrite, miargyrite and galena. K-Ar analysis of the altered sericite from the Beonjeong mine yielded a date of $94.2{\pm}2.4\;Ma$ (Lee, 1992). This indicates a likely genetic tie between ore mineralization and intrusion of the middle Cretaceous diorite ($108{\pm}4\;Ma$). The ${\delta}^{34}S$ values ranged from +1.0 to 8.3‰ with an average of +4.4‰ suggest that the sulfur in the sulfides may be magmatic origin. The temperatures of mineralization by the sulfur isotopic composition with coexisting pyrite-galena and pyrite-chalcopyrite from Beonjeong and Jeungheung mines were $343^{\circ}C$ and $375^{\circ}C$ respectively. This temperature is in reasonable agreement with the homogenization temperature of primary fluid inclusion quartz ($330^{\circ}C$ to $390^{\circ}C$; Park.1989). Four samples of quartz from ore veins have ${\delta}^{18}O$ values of +6.9~+10.6‰ (mean=8.9‰) and three whole rock samples have ${\delta}^{18}O$ values of +7.4~+10.2‰ with an average of 7.4‰. These values are similar with those of the Cretaceous Bulgugsa granite in South Korea (mean=8.3‰; Kim et al. 1991). The calculated ${\delta}^{18}O_{water}$ in the ore-forming fluid using fractionation factors of Bulgugsa et al. (1973) range from -1.3 to -2.3‰. These values suggest that the fluid was dominated by progressive meteoric water inundation through mineralization.

  • PDF

Petrochemistry of the Soyeonpyeong titaniferous iron ore deposits, South Korea (소연평도 함티타늄 자철광상의 암석지구화학적 연구)

  • Kim, Kyu Han;Lee, Jung Eun
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.345-361
    • /
    • 1994
  • Lens shaped titanomagnetite ore bodies in the Soyeonpyeong iron mine are embedded in amphibolites, which were intruded into Precambrian metasediments such as garnet-mica schist, marble, mica schist, and quartz schist. Mineral chemistry, K-Ar dating and hydrogen and oxygen stable isotopic analysis for the amphibolites and titanomagnetite ores were conducted to interpret petrogenesis of amphibolite and ore genesis of titanomagnetite iron ore deposits. Amphibolites of igneous origin have unusually high content of $TiO_2$, ranging from 0.94 to 6.39 wt.% with an average value of 4.05 wt.%. REE patterns of the different lithology of the amphibolite show the similar trend with an enrichment of LREE. Amphiboles of amphibolites are consist mainly of calcic amphiboles such as ferro-hornblende, tschermakite, ferroan pargasite, and ferroan pargasitic hornblende. K-Ar ages of hornblende from amphibolite and gneissic amphibolite were determined as $440.04{\pm}6.39Ma$ and $351.03{\pm}5.21Ma$, respectively. This indicates two metamorphic events of Paleozoic age in the Korean peninsula which are correlated with Altin orogeny in China. The titanomagnetite mineralization seems to have occurred before Cambrian age based on occurrence of orebodies and ages of host amphibolites. The Soyeonpyeong iron ores are composed mainly of titanomagnetite, ilmenite, and secondary minerals such as ilmenite and hercynite exsolved in titanomagnetite. The temperature and the oxygen fugacity estimated by the titanomagnetite-ilmenite geothermometer are $500{\sim}600^{\circ}C$ (ave. $550^{\circ}C$) and about $2{\pm}10^{-23}bar$, respectively. Hornblendes from ores and amphibolites which responsible for magnetite ore mineralization, have a relatively homogeneous isotopic composition ranging from +0.8 to +3.9 ‰ in ${\delta}^{18}O$ and from -87.8 to -113.3 ‰ in ${\delta}D$. The calculated oxygen and hydrogen isotopic compositions of the fluids which were in equilibrium with hornblende at $550^{\circ}C$, range from 2.8 to 5.9‰ in ${\delta}^{18}O_{H2O}$ and from -60.41 to -81.31 ‰ in ${\delta}D_{H2O}$. The ${\delta}^{18}O_{H2O}$ value of magnetite ore fluids are in between +6.4 to + 7.9 ‰. All of these values fall in the range of primary magmatic water. A slight oxygen shift means that $^{18}O$-depleted meteoric water be acted with basic fluids during immiscible processes between silicate and titaniferous oxide melt. Mineral chemistry, isotopic compositions, and occurences of amphibolites and orebodies, suggest that the titanomagnetite melt be separated immisciblely from the titaniferous basic magma.

  • PDF

Mineralogical Changes Caused by the Weathering of Tailings Deposited on the Riverside of the Nakdong River, Bonghwa, Korea (봉화군 일대 낙동강변에 퇴적된 광미의 풍화에 따른 광물학적 변화)

  • Kim, Min-Jung;Kim, Yeong-Kyoo;Park, Hyoung-Sim;Jeon, Sang-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.331-339
    • /
    • 2008
  • In the upstream of Nakdong river in Bonghwa-gun, Gyeongsangbuk-do, certain areas of riverside were found to be covered by weathered mine tailings which were assumed to be migrated and deposited by flood. This study was conducted to investigate the formation and characteristics of the secondary minerals from tailings and related leaching behavior of heavy metals in the severely weathered tailing deposits by river waters. Quartz, feldspar, micas, chlorite, hornblende, talc, pyroxene (johannsenite), pyrite, and calcite were identified as primary minerals by XRD. Kaolinite can be formed by the weathering of tailings, but considering the short period of weathering time, kaolinite in the deposits is considered to be from unweathered tailings or moved from soils. The secondary minerals such as goethite, gypsum, basanite, and jarosite were also identified. The formation of the secondary minerals was affected by the species of primary minerals and pH conditions. The weathering of pyrite produced sulfate minerals such as gypsum, basanite, jarosite, and also goethite. Mn oxide was also identified by SEM, coated on the primary minerals such as quartz. This Mn oxide was poorly crystalline and thought to be the weathering product of johannsenite (Mn-pyroxene). The Fe and Mn oxides are the main minerals determining the brown/red and black colors of weathered tailings. EDS results showed that those oxides contain high concentrations of Pb, Zn, and As, indicating that, in the river, the formation of Fe and Mn oxides can control the behavior and leaching of heavy metals by co-precipitation or adsorption.

H/F Variation in Wolframites According to Depth and Temperature of Mineralization at Ssangjeon, Weolag, Cheongyang and Sannae Mines, Korea (쌍전, 월악, 청양 및 산내 철·망간중석 광산의 유체포유물 온도와 심도에 따른 H/F 값의 변화)

  • Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.259-265
    • /
    • 1993
  • The variation of H/F coefficient (Hubnerite/Feberite coefficient) and the temperature of formation with depth have been studied for the hydrothermal tungsten-quartz veins from Ssangjeon, Weolag, Cheongyang, and Sannae mines. All samples were selected at the same paragenetic stage and mineral assemblege according to depth. The studied mines provide an opportunity to examine and regional variations in wolframite composition in different provinces. The formation temperature is linearly related to the depth. At the Weolag, Cheongyang and Sannae mines, the H/F ratio of wolframite and filling temperatures of fluid inclusions in quartz show a general tendency to decrease at shallow levels, in spite of different geological settings. This implies the pH of fluid will decrease vertically with falling temperature and the high H/F ratio of wolframite in deep zone result in an increase of pH with depth. The Ssangjeon mine exhibits a tendency to increase slightly upwards at shallow level. This implies a different geochemical environment (high pH environment) for the Ssangjeon mine, as compared to the other three mines. The H/F coefficient pattern suggests that it is a useful geothermometer for vein-type tungsten deposits in Korea. The H/F coefficient as an indication of depth should be examined for use in exploration.

  • PDF

Mineralogy of Clay Minerals from the Sarisan Mine, Korea (麗州 싸리산 鑛山에서 産出하는 粘土鑛物에 對한 鑛物學的 硏究)

  • Kim, Geon-Young;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.79-92
    • /
    • 1992
  • The Sarisan clay deposits of hydrothermal origin are found in the intensely weathered wto-mica granite in Yeoju area. The major clay minerals of the Sarisan mine are illite and montmorillonite with minor disordered kaolinite, vermiculite, and some interstratified mineral. Clay minerals were studied using various methods including X-ray diffraction, infrared absorption spectroscopy, electron microscopy, and thermal and chemical analyses. Illites occur as discrete illite or highly illitic interstratified mineral. They are of 1M and $2M_1$ polytypes and characterized by a low lattice charge (1.768-0.926 per unit formula), low $K^+$ content (0.741-0.902 per unit formula), and high Si/Al ratio (1.154-1.293) as compared with muscovite. Montmorillonites are highly negative charged and occasionally random-interstratified as I/S with 80-98% smectite. Hydrothermal alteration is more important than later weathering alteration for the formation of illite and montmorillonite clay minerals. The hydrothermal alteration took place through two stages; the formation of illite in the early stage and the formation of montmorillonite in the late stage. Disordered kaolinite and vermiculite are the weathering products of plagioclase and biotite, respectively.

  • PDF

Preliminary Study on the Application of Remote Sensing to Mineral Exploration Using Landsat and ASTER Data (Landsat과 ASTER 위성영상 자료를 이용한 광물자원탐사로의 적용 가능성을 위한 예비연구)

  • Lee, Hong-Jin;Park, Maeng-Eon;Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.467-475
    • /
    • 2010
  • The Landsat and ASTER data have been used in mineralogical and lithological studies, and they have also proved to be useful tool in the initial steps for mineral exploration throughout Nevada mining district, US. Huge pyrophyllite quarry mines, including Jungang, Samsung, Kyeongju, and Naenam located in the southeastern part of Gyeongsang Basin. The geology of study area consists mainly of Cretaceous volcanic rocks, which belong into Cretaceous Hayang and Jindong Group. They were intruded by Bulgugsa granites, so called Sannae-Eonyang granites. To extraction of Ratio model for pyrophyllite deposits, tuffaceous rock and pyrophyllite ores from the Jungang mine used in reflectance spectral analysis and these results were re-sampled to Landsat and ASTER bandpass. As a result of these processes, the pyrophyllite ores spectral features show strong reflectance at band 5, whereas strong absorption at band 7 in Landsat data. In the ASTER data, the pyrophyllite ores spectral features show strong absorption at band 5 and 8, whereas strong reflectance at band 4 and 7. Based on these spectral features, as a result of application of $Py_{Landsat}$ model to hydrothermal alteration zone and other exposed sites, the DN values of two different areas are 1.94 and 1.19 to 1.49, respectively. The differences values between pyrophyllite deposits and concrete-barren area are 0.472 and 0.399 for $Py_{ASTER}$ model, 0.452 and 0.371 for OHIb model, 0.365 and 0.311 for PAK model, respectively. Thus, $Py_{ASTER}$ and $Py_{Landsat}$ model proposed from this study proved to be more useful tool for the extraction of pyrophyllite deposits relative to previous models.

A Mineralogical Study on the Arsenic Behavior in the Tailings of Nakdong Mine (낙동광산의 광미 내 비소 거동에 대한 광물학적 연구)

  • Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.359-370
    • /
    • 2009
  • Arsenic and heavy metals leached out as a result of oxidation of tailings exposed to the surface pose a serious environmental contamination of mine areas. This study investigated how arsenic behavior is controlled by a variety of processes, such as oxidation of sulfides and formation or alteration of secondary minerals, based on mineralogical methods. The study was carried out using the tailing samples obtained from Nakdong mine located in Jeongseongun, Gangwondo. After separating magnetic and non-magnetic minerals using pretreated tailing samples, each mineral sample was classified according to their colors and metallic lusters observed by the stereoscopic microscope. Subsequently, the mineralogical properties were determined using various instrumental analyses, such as x-ray diffractometer (XRD), energy dispersive spectroscopy (EDS), and electron probe micro analyzer (EPMA). The literature review confirmed that various ore minerals were identified in the Nakdong ore deposits. In this study, however, there were observed a few original ore minerals as well as secondary and/or tertiary minerals newly formed as a result of weathering including oxidation. In particular, we did not recognize pyrrhotite which has been known to originally exist in a large abundance, but peculiarly colloform-type iron (oxy)hydroxides were identified, which indicates most of pyrrhotite has been altered by rapid weathering due to its large reactivity. In addition, a secondary scorodites filling the fissure of weathered primary arsenopyrites were identified, and it is speculated that arsenic is immobilized through such a alteration reaction. Also, we observed tertiary iron (oxy)hydroxides were formed as a result of re-alteration of secondary jarosites, and it suggests that the environment of tailing has been changed to high pH from low pH condition which was initiated and developed by oxidation reactions of diverse primary ore minerals. The environmental change is mainly attributed to interactions between secondary minerals and parental rocks around the mine. As a result, not only was the stability of secondary minerals declined, but tertiary minerals were newly formed. As such a process goes through, arsenic which was immobilized is likely to re-dissolve and disperse into surrounding environments.

Grain Size and Texture of Silver Minerals from Duk-Eum Ore Deposits (덕음광산(德音鑛山) 은광물(銀鑛物)의 입도(粒度)와 조직(組織))

  • Yang, Dong Yun;Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.227-237
    • /
    • 1986
  • The Duk-Eum mine located in Kongsan-myeon, Naju-gun, Cheolanamdo is producing silver ore mainly, with rare gold association. The grade-up and recovery of the concentrates have been concerned to the main problem. And then, this study aimed at applying the basic data for ore processing. In the first half of the study, the attempts were made to identify the ore minerals, this followed by determination of the mineral texture, paragenesis, grain size, and size distribution by employing the microscopical method and the etching test. The results of the study are as follows: 1. The ore deposit is composed of the hydrothermal fissure linked veins, and filling cavities are mostly tensile fractures or joints, in rhyolitic rocks as a wall rock. 2. The principle ore minerals are native silver, acanthite, canfieldite, pyrargyrite, galena, tetrahedrite, sphalerite, pyrrhotite, chalcopyrite, chalcocite, covellite, zincite, and the gangue minerals are quartz and calcite. 3. The grain size of each ore minerals before grinding are; max. $2\frac{1}{2}$ mesh, medium 48-100 mesh(main size, contained over 80%), min. 3200mesh. And the grain size of each ore minerals after grinding is; max. 42mesh, medium 65-250mesh(main size, contained over 80%), min. 3200mesh. 4. The properties of the mineral texture effected on the ore dressing are follows; a) Inclusion texture; the fine grains of chalcopyrite is included in most acanthite, and rarely, that of galena included in acanthite. b) Exsolution texture; pyrargyrite is exsolved in acanthite. c) Replacement texture; native silver replaced pyrargyrite, and acanthite replaced galena. d) Interlocking paragenetic texture; the interlocking paragenetic minerals are pyrite, chalcopyrite, chalcocite, canfieldite. e) Fissure filling texture; chalcopyrite was filled along the cracks in acanthite. Among of the above texture, it is impossible to liberate the grains of a), and more difficult to liberate those of b) and c), while easy to liberate those of d) and e).

  • PDF

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (II) : Poongjeon Talc Deposit (중부옥천변성대의 활석광화작용에 관한 연구 (II) : 풍전활석광상을 중심으로)

  • Park, Hee-In;Lee, In Sung;Hur, Soon Do;Shin, Dong Bok
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.543-551
    • /
    • 1997
  • Poongjeon talc deposits is emplaced in dolomite and dolomitic limestone of the Cambro-Ordovician Samtaesan Formation. Ore in Poongjeon is low grade talc and the deposit has been known as the contact metasomatic or hydrothermal replacement type related to the intrusion of late Cretaceous granite in this area. X-ray diffraction, electron microprobe analysis, fluid inclusion and stable isotope analysis were utilized to examine the mineralogy of the ore and the origin of the ore fluid. The ore from Poongjeon mine mainly consists of talc and tremolite with minor amount of illite, vermiculite, smectite, and chlorite-vermiculite mixed layer. Occurrence of ore body indicates that the talc-tremolite ore was formed through the replacement by the $SiO_2$-rich hydrothermal fluid along the bedding and dike boundaries, or contact of amphibolite and basic dike with carbonate rocks. The temperature and pressure of the ore forming fluids at the time of the talc mineralization were estimated as $350^{\circ}C$ and 400 bar, respectively, based on the heating and freezing data of the fluid inclusions in quartz from talc-tremolite veins. During the talc-tremolite formation, fluids were divided into $CO_2$-enriched fluid and $CO_2$-poor fluid from $CO_2$ immiscibility (or effervescence). Oxygen isotope values (${\delta}^{18}O$) of the talc-tremolite fall within a range between 12.2 and 12.9‰. Hydrogen isotope values(${\delta}D$) of the ore range from -60 to -85‰ and $H_2O$ contents range from 2.0 to 3.4 wt.%. ${\delta}^{18}O$ and ${\delta}D$ values of talc ore indicate that the hydrothermal fluid involved in talc-tremolite formation was of igneous origin. Oxygen and hydrogen isotopic exchange between talc ore and the surface water was negligible after talc-tremolite ore formation.

  • PDF