• 제목/요약/키워드: Mind control interface technology

검색결과 2건 처리시간 0.015초

군사용 제어기기를 위한 마인드 컨트롤 인터페이스 기술 (Mind control interface technology for the military control instrument)

  • 김응수
    • 안보군사학연구
    • /
    • 통권1호
    • /
    • pp.249-267
    • /
    • 2003
  • EEG is an electrical signal, which occurs during information processing in the brain. These EEG signals have been used clinically, but nowadays we are mainly studying Brain-Computer Interface (BCI) such as interfacing with a computer through the EEG, controlling the machine through the EEG. The ultimate purpose of BCI study is specifying the EEG at various mental states so as to control the computer and machine. This research makes the controlling system of directions with the artifact that are generated from the subject's will, for the purpose of controlling the machine correctly and reliably. We made the system like this. First, we select the particular artifact among the EEG mixed with artifact, then, recognize and classify the signals' pattern, then, change the signals to general signals that can be used by the controlling system of directions.

  • PDF

E-MIND II를 이용한 고립 단어 인식 시스템의 설계 (Isolated Word Recognition with the E-MIND II Neurocomputer)

  • 김준우;정홍;김명원
    • 전자공학회논문지B
    • /
    • 제32B권11호
    • /
    • pp.1527-1535
    • /
    • 1995
  • This paper introduces an isolated word recognition system realized on a neurocomputer called E-MIND II, which is a 2-D torus wavefront array processor consisting of 256 DNP IIs. The DNP II is an all digital VLSI unit processor for the EMIND II featuring the emulation capability of more than thousands of neurons, the 40 MHz clock speed, and the on-chip learning. Built by these PEs in 2-D toroidal mesh architecture, the E- MIND II can be accelerated over 2 Gcps computation speed. In this light, the advantages of the E-MIND II in its capability of computing speed, scalability, computer interface, and learning are especially suitable for real time application such as speech recognition. We show how to map a TDNN structure on this array and how to code the learning and recognition algorithms for a user independent isolated word recognition. Through hardware simulation, we show that recognition rate of this system is about 97% for 30 command words for a robot control.

  • PDF