• Title/Summary/Keyword: Milled grain

Search Result 337, Processing Time 0.031 seconds

Physicochemical Factors Affecting Cooking and Eating Qualities of Rice and the Ultrastructural Changes of Rice during Cooking (쌀의 취반 및 식미특성에 영향을 주는 요인들과 취반 시 쌀의 배유 조직의 변화)

  • 이영은;오스만엘리자베쓰엠
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.6
    • /
    • pp.637-645
    • /
    • 1991
  • Physicochemical factors affecting cooking and eating quality of rice and their mechanisms were investigated. The stickiness of cooked rice was negatively correlated with amylose content(r=0.58, p<0.05) and protein content(r=-0.72, p<0.01), but not affected by crude fat content of rice. The ultrastructure of cooked rice grain showed the progressive gelatinization of starch from the periphery toward the center of the endosperm as water and heat energy diffused into. The rate of water diffusion appears to be dependent on the cell arrangement in the endosperm and the protein content of milled rice. Once water and heat reach the starch granules, the rate of in situ gelatinization of starches appears to be dependent on their own gelatinization temperature range and amylose content. Protein acts as a barrier for the swelling of starch and water diffusion in two ways : 1) by encasing starch granules in the starchy endosperm, and 2) by forming a barrier between the subaleurone layer and the starchy endosperm. Therefore, the separation and fragmentation of the outermost layers of the endosperm occurred more easily in the low-protein content rices, and was associated with increases of solids lost in cooking-water at 95$^{\circ}C$ and stickiness of cooked rice.

  • PDF

Growth, Rice Yield and Edible Quality of Rice under Naturally Reseeded Chinese Milk Vetch Cropping System (자운영 지속재배시 벼 생육, 수량 및 미질)

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Hwang, Woon-Ha;Choi, Kyung-Jin;Park, Sung-Tae;Kim, Jeong-Il;Yeo, Un-Sang;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.351-356
    • /
    • 2009
  • Growth, milled rice yield and edible quality of rice in naturally reseeded Chinese milk vetch(CMV)-rice cropping system was compared with those in rice mono cropping on silty loam soil in Milyang from 2006-2008. Practicing natural reseeding technology recorded high CMV reseeding stand ranging from 565-805 plants $m^{-2}$ and resulting in the production of 13.0-17.0 kg N/10a from the CMV plant biomass which is greater than the recommendation rate of 9 kgN/10a. The plant height of rice plant grown in natural reseeding field is shorter at tillering stage but it was similar to the rice mono cropping at later stage. Dry matter production had similar trend to plant height. On the other hand, the leaf color in naturally reseeded CMV-rice cropping system was similar to the rice mono cropping up to panicle heading stage but it was high at mature stage, indicating that the nitrogen was provided by the CMV decomposition until later stage of rice. The yield components such as culm number $m^{-2}$ was greater and 1,000-brown rice weight was heavier than those of rice mono cropping but the ripened grain ratio was lower in naturally reseeded CMV-rice cropping system. Milled rice yield of naturally reseeded CMV-rice cropping system was similar to that of rice mono cropping. However, head rice percentage of milled rice was lower due to low ripened grain ratio. This result indicates that natural CMV reseeding technology can completely replace chemical fertilizer in CMV-rice cropping system.

Composition in Milling Recovery Ratio of Rice Cultivars, Ilpumbyeo and Chucheongbyeo (일품벼와 추청벼의 도정률 차이의 작물학적 요인분석)

  • Kim, Deog-Su;Kim, Sun-Lim;Song, Jin;Hur, On-Suk;Kim, Jung-Tae;Lee, Choon-Ki;Kim, Jae-Hyun;Kim, Kee-Jong;Suh, Sae-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • This study was carried out to analysis the factor effected by milling rice rate, and to provide the developing rice varieties and cultivation technology. Panicle numbers per spike of Ilpumbyeo and Chucheongbyeo were 105 and 70, respectively. The primary branch panicle rate was Ilpumbyeo 56.2% and Chucheongbyeo 61.4%. The secondary panicle rate of Ilpumbyeo and Chucheongbyeo was 43.3% and 37.9%, respectively. Grain filling rate using specific gravity showed that Ilpumbyeo was the lower filling rate than Chucheongbyeo. Hull weight per one grain was Ilpumbyeo 41.9 mg and Chucheongbyeo 3.92 mg, and hull weight per rough rice 1 kg was Ilpumbyeo 157.36 g and Chucheongbyeo 151.31 g. In milling rate, brown rice ratio by ripening degree of llpumbyeo and Chucheongbyeo with combine harvest was 81.22% and 82.52%. Milled/brown rice ration of llpumbyeo and Chucheongbyeo showed 92.14% and 92.51%. The milling recovery ratio of llpumbyeo was decreased 1.67% then Chucheongbyeo, and the difference was mainly due to the hull weight (0.61%), milled/brown rice ratio (0.37%) and ripening degree (0.69%). Although the varietal differences were found in hull weight and millied/brown rice ratio between llpumbyeo and Chucheongbyeo, the ripening degree was considered as the factor that could be reduced by cultivation technology and post-harvest management.

Effects of Forage-Rice Cropping Systems on the Growth and Grain Quality of Early Maturing Rice Cultivars and Soil Chemical Properties in Paddy Fields in Southern Korea (사료작물-벼 작부체계가 조생종 벼의 생육과 미질 특성 및 토양의 화학적 특성에 미치는 영향)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.297-306
    • /
    • 2021
  • To select rice (Oryza sativa L.) cultivars suitable for forage-rice double cropping system, the growth and grain quality of four early maturing rice cultivars (Joun, Jopyeong, Haedamssal, and Unkwang), and the chemical properties of soils were investigated under single- (fallow-rice) and forage-rice double-cropping systems in paddy fields in Miryang, southern Korea. The soil where two forage crops [Italian ryegrass (Lolium multiflorum Lam.) and oat (Avena sativa L.)] were cultivated during winter had a slightly lower pH; an increase in total nitrogen (T-N), K, Ca, and Na contents; and a slight decrease in organic matter and available P2O5 contents, compared with the soil fallowed during winter. This shows that the chemical properties of paddy soils can be improved by winter forage cropping. At the heading stage, the culm length, panicle length, panicle number, and leaf color of all cultivars, except for Haedamssal, were generally higher under double-cropping than under single-cropping. For Haedamssal, the culm length and leaf color did not differ between the cropping systems, but the panicle length was slightly shortened and its panicle number increased under double-cropping. After harvest, the yield of milled rice decreased for all cultivars except Haedamssal, but increased in Haedamssal under double-cropping. The head rice rate was slightly higher under double cropping, particularly in Jopyeong and Haedamssal, than under single-cropping. The protein content of milled rice under double cropping was higher and its amylose content was similar or slightly lower compared to those of rice under single cropping, resulting in decreased Toyo values for rice under double-cropping. The pasting temperature did not differ significantly between the cropping systems. However, Haedamssal had a low pasting temperature but a high Toyo value under double cropping, compared to the other three cultivars, suggesting that its palatability is relatively high. Furthermore, panicle number increased and milled rice yield did not decrease, even under double cropping. Therefore, Haedamssal seems to be the best cultivar for paddy-based double cropping with forage crops.

Screening of Rice Cultivars for Italian Ryegrass-Rice Double Cropping Systems in Paddy Fields of Southern Korea (남부지역 논의 사료작물-벼 이모작 작부체계에 적합한 벼 품종의 선발)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • To identify rice (Oryza sativa L.) cultivars suitable for Italian ryegrass (Lolium multiflorum Lam.)-rice double cropping systems, we investigated the yield and grain quality of four different midseason maturing rice cultivars ('Daebo', 'Haepum', 'Haiami', and 'Samdeog') and four midseason-to-late maturing rice cultivars ('Hyunpoom', 'Saeilmi', 'Saenuri', and 'Samkwang') in single rice cropping and Italian ryegrass-rice double cropping systems in paddy fields of Miryang, South Korea. We found that organic matter and available P2O5 content slightly decreased, whereas Na content increased, in the soil where Italian ryegrass was cultivated during winter compared to that in the soil that remained fallow during winter. The pH, electrical conductivity, organic matter, and contents of K+, Ca2+, Mg2+, and Na+ decreased, whereas the available P2O5 content slightly increased, in the soil where rice was harvested in both single and double cropping systems. However, compared to the optimum soil conditions for rice cultivation, available P2O5 and K+ content were high and Mg2+ content was low in both single and double cropping systems. At the heading stage, the culm length and leaf color slightly increased in most of the rice cultivars, whereas the panicle length and number slightly decreased, in the double cropped system. After harvesting, spikelet number and milled rice yield did not show a significant difference between single and double cropping systems. However, the ripened grain rate and weight per thousand grains increased slightly in the 'Saeilmi' and 'Samkwang' cultivars but remained either stable or slightly low in other cultivars in the double cropping system. The milled rice yield was high (> 500 kg/10a) in 'Daebo' and 'Haepum' among midseason maturing rice cultivars, and in 'Saeilmi' and 'Saenuri' among midseason-to-late maturing rice cultivars, in both single and double cropping systems. The head rice rate was high in midseason maturing rice cultivars in the double cropping systems, reaching > 70% in 'Haepum' and 'Haiami' cultivars, whereas it decreased in most midseason-to-late maturing rice cultivars (excluding 'Samkwang' cultivar), in double cropping systems. Particularly, it exceeded > 70% in the 'Saenuri' cultivar in both single and double cropping systems. The protein content in milled rice increased, whereas the amylose content either remained stable or slightly increased, in double cropping systems. The Toyo taste value decreased in all midseason-to-late maturing rice cultivars and slightly increased in the 'Daebo' and 'Haiami' cultivars among midseason maturing rice cultivars in double cropping systems. However, Toyo taste values in the 'Haepum', 'Haiami', and 'Saenuri' cultivars exceeding > 80% in both single and double cropping systems. Therefore, we recommend 'Haepum', 'Haiami', and 'Saenuri' cultivars as candidates for Italian ryegrass-rice double cropping systems due to high yield, head rice rate, and Toyo taste value.

Adaptable Tropical Japonica High quality New Rice Cultivar 'Japonica 6' (열대지역 적응 고품질 자포니카 벼 신품종 'Japonica 6')

  • Jeong, O-Young;Torollo, Gideon;Bombay, Maurene;Baek, Man-Kee;Ahn, Eok-keun;Hyun, Woong-Jo;Park, Hyun-Su;Jeong, Jong-Min;Cho, Jun-Hyeon;Lee, Jeong-Heui;Yeo, Un-Sang;Lee, Jeom-Sig;Jeong, Eung-Gi;Kim, Choon-Song;Suh, Jung-Pil;Kim, Bo-Kyeong;Lee, Jeom-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.3
    • /
    • pp.249-254
    • /
    • 2019
  • 'Japonica 6' is a japonica rice variety developed from a cross between 'MS11', the beginning variety adaptable to tropical region, and 'IR86743-28-1-4', an elite line of high yield and good plant type by a Korea(RDA)-IRRI cooperative breeding program at IRRI in 2017. The growth duration of 'Japonica 6' is 121 days from sowing to harvest. It is 10 days later than that of the check variety 'MS11'. The culm length of 'Japonica 6' is 70 cm, and 1,000-brown rice grain weight is 26.7 g. It has a shorter culm and a larger grain. size than that of MS11. 'Japonica 6' is moderately resistant to blast disease but susceptible to bacterial blight, tungro virus and plant hoppers. The milled rice recovery rate of 'Japonica 6' is improved than that of 'MS11'. The head rice rate of 'Japonica 6' is significantly higher than that of 'MS11'. Yield of 'Japonica 6' is averagely 3.59 MT/ha of milled rice in 5 areas of the Philippines. The 'Japonica 6' was registered in Philippines and would be adaptable to the diverse regions of tropical Asia (Registration No in Philippines. BPI-NSIC-2017-Rc 484SR).

'Jungmo1033', a Derivative of High-quality Native Rice Variety 'Jagwangdo' (재래벼 '자광도' 유래 고품질 벼 '중모1033')

  • Jeong, Eung-Gi;Won, Yong-Jae;Ahn, Eok-Keun;Hyun, Ung-Jo;Cho, Young-Chan;Suh, Jung-Pil;Oh, Myoung-Kyu;Lee, Jeom-Ho;Hong, Ha-Cheol;Lee, Chung-Kuen;Jeon, Yong-Hee;Jeung, Ji-Ung;Chung, Hi-Che;Kim, Bo-Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.51 no.1
    • /
    • pp.34-40
    • /
    • 2019
  • 'Jungmo1033', a japonica rice variety, was developed by the rice breeding team at the National Institute of Crop Science (NICS) in 1992. It is derived from a cross between a native variety 'Jagwangdo', which has translucent milled rice and medium maturity; and 'Hwayeong', which is an elite line with bacterial blight resistance and mid-late maturity. The heading date of 'Jungmo1033' was August 10 in the middle plain area of Korea, which was two days later than that of 'Hwaseong'. 'Jungmo1033' has a culm length of 79 cm, which was 5 cm shorter than that of 'Hwaseong', and 105 spikelets per panicle. 'Jungmo1033' showed resistance to bacterial blight (K1, K2, and K3 races) and stripe virus, but susceptibility to the K3a race of bacterial blight, dwarf and black-streaked dwarf viruses, and planthoppers. The milled rice of this variety exhibited translucency and a medium short grain shape. It had an excellent appearance and lower amylose content (19.1%) than that of 'Hwaseong'. The characteristics related to grain milling were better than those of 'Hwaseong', especially head rice milling recovery ratio and head rice ratio (94.8%). 'Jungmo1033' showed a milled rice productivity of 5.38 MT/ha at 11 sites under ordinary cultivation conditions. (Registration No. 5723)

Effect of Polluted Irrigation Water on the Rice Growth and the Grain Quality (오염(汚染) 관개수(灌漑水)가 벼 생육(生育) 및 미질(米質)에 미치는 영향(影響))

  • Kim, Jong-Soo;Park, Kyeoung-Bai;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.132-137
    • /
    • 1993
  • This study was conducted to establish a safe cultivation technique of rice in the area irrigated with polluted water. The changes of water and grain quality were investigated in the two paddy soils which are located in the adjacent of Geumho river in 1991. The results obtained in this study are as follows : 1. The qualities of irrigation water were shown to be in the range of 6.7~7.4 in pH, 21.3~52.8ppm in COD. 3.2~5.3ppm in $NH_4-N$ and 1.6~6.0ppm in $PO_4$, respectively. Concentration of COD and $NH_4-N$ were over the standard levels. Therefore, the water pollution was mainly caused by organic waste matters. 2. Ranges of the Soil pH of Gyeongsan and Gyuam series were 5.6~6.0, 6.1~6.3 respectively. The contents of avaiable $P_2O_5$ and $SiO_2$ were high in the silicate treatment plots among other plots. 3. Degree of irrigation water pollution of Geumho river showed the highest peak in June. 4. Plant height, number of panicle and yield of rice grain were not decreased by the diminution of nitrogen fertilizer application. 5. The $Mg/(K{\times}N)$ ratio and Gel consistency of milled rice were increased in the nitrogen decreasing plot, but the alkali digestability value and protein content were decreased. Therefore, it was desirable to decrease the amount of nitrogen fertilizer application.

  • PDF

The Ratooning Potential of Several Early-Ripening Rice Cultivar in Korea (조생종 벼의 움벼(ratoon-rice)생산 및 움벼의 생육특성)

  • Shin, Jong-Hee;Kim, Sang-Kuk;Park, Sang-Gu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.139-145
    • /
    • 2015
  • Rice ratooning is the production of a second rice crop from the stubble left behind after the main-crop harvest. The main advantage of rice ratooning is that in areas where rice is the main crop, double crop of rice can be grown for additional returns. Eight cultivars of rice were tested for estimation their ratooning ability. The main crop was harvested at mass maturity, after which the tillers were mowed to stubbles of about 10 cm tall. And then left without any further input, until the ratooned plant were ready for harvest. Highly significant variations were detected in the ratoon performance among cultivars, with ratoon ability ranging from 0% ('Unkwang', 'Jopeyong', 'Odae', 'Nokyang') to 33% ('Jinbuol') in their grain yield. The maximum grain yield from ratoon rice was 202 and 203 kg/10a for 'Jinbuol' and 'Joun' followed by 'Junamjoseng' 174kg/10a. Protein and amylose contents of ratoon rice were more increased than those of main rice. The platability value of cooked rice of ratoon was lower than that of main crop. Germination rate of the previous year's harvest of rice was not significantly different between ratoon and main crop. This rice ratooning system requires short duration, creating possibility for growing another crop in the same cropping year and offers an opportunity to increase cropping intensity per unit of cultivated areas.

Development of molybdenum silicides for hydrogen fueled combustion turbine by mechanical alloying (기계적 합금화에 의한 수소연소 터어빈용 Mo-Si계 금속간화합물의 개발에 관한 연구)

  • 이충효
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.665-672
    • /
    • 1997
  • We applied mechanical alloying process by ball milling to produce molybdenum silicides $MoSi_2$ and $Mo_5Si_3$ using a mixture of elemental molybdenum and silicon powders at room temperature. The intermetallic compound MoSi$_3$ have been obtained by ball milling of $Mo_{33}Si_{67}$ mixture powders for 100 h, which is transformed to single $MoSi_2$ phase by subsequent heat treatment up to $725^{\circ}C$. The grain size of the $MoSi_2$ powders thus obtained was 19 nm, being approximately four times smaller than that of the commercial alloy. The intermetallic compound $MoSi_2$ with grain size of 30 nm have been also obtained by ball milling of $Mo_{62}Si_{38}$ mixture powders for 500 h, which is transformed to single $MoSi_2$ phase by heating up to $1000^{\circ}C$. We believe that the retarded ball milling time for the formation of $MoSi_2$ phase is attributed to its complicated crystal structure and large unit cell. The finer grain size in the ball-milled molybdenum silicides powders is expected to improve room-temperature mechanical properties for high-temperature structural materials.

  • PDF