• Title/Summary/Keyword: Milled Rice

Search Result 539, Processing Time 0.026 seconds

Milling Characteristics and Qualities of Korean Rice (우리나라 쌀의 도정 및 품위특성)

  • Kim, Young-Bae;Hah, Duk-Mo;Kim, Chang-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 1990
  • With a view to improving the method of rice marketing quality estimation, vaietal milling characteristics and apparent qualities were studied and their statistical interrelationships were computed for 2 years crops, using 22 varieties of Japonica type and Japonica x Indica type (Tongil). The milling yield was the highest for Japonica, while the broken rice yields was the highest for Japa.xInd. type. But bran yield did not show any significant differences among rice types. Milling factors were volume weight of brown rice, dehulling yield, and Polishing yields; the better these factors, the higher the yield. High apparent quality milled rice with high milling yield were produced from rice types whose broken rice, chalked rice, husk yield and bran yield were little and/or low.

  • PDF

Effects of Stubble Height, Irrigation and Nitrogen Fertilization on Rice Ratooning in Korea

  • Shin, Jong-Hee;Kim, Sang-Kuk;Park, Sang-Gu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.4
    • /
    • pp.431-435
    • /
    • 2015
  • Rice (Oryza sativa L.) ratooning is the production of a second rice crop from the stubble left behind after the main crop harvest. The objectives of this study were to evaluate the effects of main-crop stubble height, irrigation and fertilization on ratoon grain yield. Main crop 'Jinbuol' rice cultivar was harvested to leave with 10, 20, 30, or 40 cm stubble height. When the main crop stubble was harvested with 10 cm height, ratoon rice grain yield was increased by 2,810 kg/ha. Irrigation on stubbles after main crop harvest did not affect the ratoon crop yield and rice quality. The results showed a large variation in the ratoon performance by fertilizer application methods. Top-dressed nitrogen fertilizer on the stubble after harvest caused increase in panicle production and higher maturity rate. However, there was no significant difference in protein content, amylose content of milled rice and cooked rice characters between plots managed with and without nitrogen fertilizer.

Quality Characteristics of Korean Rice as Brewing Adjunct (한국산 쌀의 맥주 부원료로서의 특성)

  • Lee, Won-Jong;Cho, Mi-Kyung;Chung, Koo-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.516-519
    • /
    • 1995
  • Seven Korean milled rice samples (5 Japonica, 1 Indica, 1 Commercial) were used to compare the quality of brewing adjunct with that of U.S. IR36(Indica) sample was classified as having higher amylose and protein content and lower starch content than Japonica samples. IR36 sample did not differ from Japonica samples in wort color, wort viscosity, soluble protein, percent extract and sugar composition when it was used as brewing adjunct. Korean milled rice samples did not differ from U.S. sample in soluble protein, wort pH, wort viscosity, but lower in percent extract.

  • PDF

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • 정창주;고학균;이종호;강화석
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.10-24
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist\ulcornerure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres\ulcornerhing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr\ulcorneresher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

  • PDF

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • Chung, Chang Joo;Koh, Hak Kyun;Lee, Chong Ho;Kang, Hwa Seug
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-9
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist?ure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres?hing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr?esher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

Is there a causal effect between agricultural production and carbon dioxide emissions in Ghana?

  • Owusu, Phebe Asantewaa;Asumadu-Sarkodie, Samuel
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.40-54
    • /
    • 2017
  • According to FAO, "agricultural sectors are particularly exposed to the effects of climate change and increases climate variability". As a result, the study makes an attempt to answer the question: Is there a causal effect between agricultural production and carbon dioxide emissions in Ghana? By employing a time series data spanning from 1960 to 2015 using the Autoregressive Distributed Lag method. There was evidence of a long-run equilibrium relationship running from copra production, corn production, green coffee production, milled rice production, millet production, palm kernel production and sorghum production to carbon dioxide emissions. The short-run equilibrium relationship shows that, a 1% increase in copra and green coffee production will increase carbon dioxide emissions by 0.22% and 0.03%, a 1% increase in millet and sorghum production will decrease carbon dioxide emissions by 0.13% and 0.11% in the short-run while a 31% of future fluctuations in carbon dioxide emissions are due to shocks in corn production. There was bidirectional causality between milled rice production and carbon dioxide emissions, millet production and carbon dioxide emissions and, sorghum production and carbon dioxide emissions; and a unidirectional causality running from corn production to carbon dioxide emissions and carbon dioxide emissions to palm kernel production.

Starch properties of milled rices differing in hydration rates (쌀의 수화 그룹별 전분의 성질)

  • Kim, Chang-Joo;Kim, Sung-Kon;Jae, Jae-Chun;Kwon, Joong-Ho
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 1991
  • Twenty-six japonica and 19 Tongil type milled rices were grouped based on water uptake rate at $23^{\circ}C$ and interrelationships between starch properties and hydration group were investigated. There were no significant differences in relative crystallinity, transmittance increase rate of 0.1% starch suspension and soluble amylose between japonica and Tongil type rices. The gel volume of starch n 3M KSCN solution of Tonsil type rice starch was significantly higher than that of japonica one. However, no correlations were observed between starch properties and hydration groups.

  • PDF

Agronomic Characteristics of A Promising Line Adaptable to Extremely Early Cultivation (벼 극조기 재배 적응 유망계통의 농업적 특성)

  • Lee, Jong-Hee;Oh, Seong-Hwan;Kim, Sang-Yeol;Cho, Jun-Hyeon;Lee, Ji-Yoon;Yeo, Un-Sang;Song, You-Chun;Choi, Kyoung-Jin;Park, Tae-Seon;Kang, Hang-Won;Lee, Hag-Dong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • Recently, peoples are greatly concerned with global temperature change because global warming can be a potential serious effect on agriculture production such as yield reduction and poor grain quality. On the other hand, it can bring some beneficial effects through twice cultivation of rice in temperate region. In order to overcome this situation, we developed extremely early-maturing rice 'Milyang255' which heading date was similar with 'Jinbuolbyeo'. Based on agronomic characteristics of 'Milyang255', it has very short stature as 65 cm of culm length and slightly lower spikelets number per panicle compared with that of 'Jinbuolbyeo'. However, the grain appearance, palatability and other items were better than those of 'Jinbuolbyeo' in panel test of cooked rice. The milled rice yield of 'Milyang255' is 3.94 MT/ha at the early transplanting. Especially, its grain filling rate was higher and faster than Jinbuolbyeo and the head rice ratio in milled rice was also higher. Thus, 'Milyang255' can efficiently reduce the growth duration of rice cultivation and also be useful material for research on twice cultivation of rice in Korea.

Determining Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice based on Vegetation Index and SPAD Reading (유수분화기 식생지수와 SPAD값에 의한 벼 질소 수비 시용량 결정)

  • Kim Min-Ho;Fu Jin-Dong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.386-395
    • /
    • 2006
  • The core questions for determining nitrogen topdress rate (Npi) at panicle initiation stage (PIS) are 'how much nitrogen accumulation during the reproductive stage (PNup) is required for the target rice yield or protein content depending on the growth and nitrogen nutrition status at PIS?' and 'how can we diagnose the growth and nitrogen nutrition status easily at real time basis?'. To address these questions, two years experiments from 2001 to 2002 were done under various rates of basal, tillering, and panicle nitrogen fertilizer by employing a rice cultivar, Hwaseongbyeo. The response of grain yield and milled-rice protein content was quantified in relation to RVIgreen (green ratio vegetation index) and SPAD reading measured around PIS as indirect estimators for growth and nitrogen nutrition status, the regression models were formulated to predict PNup based on the growth and nitrogen nutrition status and Npi at PIS. Grain yield showed quadratic response to PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict grain yield had a high determination coefficient of above 0.95. PNup for the maximum grain yield was estimated to be 9 to 13.5 kgN/10a within the range of RVIgreen around PIS of this experiment. decreasing with increasing RVIgreen and also to be 10 to 11 kgN/10a regardless of SPAD readings around PIS. At these PNup's the protein content of milled rice was estimated to rise above 9% that might degrade eating quality seriously Milled-rice protein content showed curve-linear increase with the increase of PNup, RVIgreen around PIS, and SPAD reading around PIS. The regression models to predict protein content had a high determination coefficient of above 0.91. PNup to control the milled-rice protein content below 7% was estimated as 6 to 8 kgN/10a within the range of RVIgreen and SPAD reading of this experiment, showing much lower values than those for the maximum grain yield. The recovery of the Npi applied at PIS ranged from 53 to 83%, increasing with the increased growth amount while decreasing with the increasing Npi. The natural nitrogen supply from PIS to harvest ranged from 2.5 to 4 kg/10a, showing quadratic relationship with the shoot dry weight or shoot nitrogen content at PIS. The regression models to estimate PNup was formulated using Npi and anyone of RVIgreen, shoot dry weight, and shoot nitrogen content at PIS as predictor variables. These models showed good fitness with determination coefficients of 0.86 to 0.95 The prescription method based on the above models predicting grain yield, protein content and PNup and its constraints were discussed.

Milling Characteristics of Milled Rice According to Milling Ratio of Friction and Abrasive Milling (마찰과 연삭 도정배분에 의한 쌀의 도정특성)

  • Kim, Hoon;Kim, Dong-Chul;Lee, Se-Eun;Kim, Oui-Woung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.439-445
    • /
    • 2009
  • This study was performed to investigate the optimum abrasive and friction milling ratio. This was accomplished by determining changes in the quality, such as whiteness, moisture content, broken kernel, unstripped embryo rate, and surface characteristics or milling difference, during an abrasive and friction based milling process. When only abrasive was milled, the increase of whiteness was fast in the first milling, whereas the increasing rate of whiteness was small in the latter milling. The decreasing rate of moisture content and broken kernel increased as the friction milling ratio was increased. Combining with the friction milling was considered a suitable method because the unstripped embryo rate was high only when abrasive milling was used. In the case of a high abrasive milling ratio, a significant milling difference was observed in the initial milling. This indicated that the milling difference was not completely eliminated despite using friction milling in the latter milling. Consequently, it was necessary to minimize the milling difference in the initial milling. When milling quality was synthetically considered, the abrasive milling ratio was varied from 20~50%. When the abrasive milling ratio was greater than 40%, the external quality of the rice milled deteriorated since holes and defects generated on the surface in the initial milling were not removed. Due to this deterioration in surface characteristics, an abrasive milling ratio of 30% was identified as a suitable level.