• Title/Summary/Keyword: Milky Way

Search Result 158, Processing Time 0.025 seconds

ICE ABSORPTION FEATURES IN NIR SPECTRA OF GALACTIC OBJECTS

  • Mori, Tamami I.;Onaka, Takashi;Sakon, Itsuki;Ohsawa, Ryou;Kaneda, Hidehiro;Yamagishi, Mitsuyoshi;Okada, Yoko;Tanaka, Masahiro;Shimonishi, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.105-107
    • /
    • 2017
  • We present results of AKARI/IRC near-infrared (NIR) slit-spectroscopy ($2.5-5.0{\mu}m$, R ~ 100) of Galactic sources, focusing on ice absorption features. We investigate the abundance of $H_2O$ and $CO_2$ ices and other ice species (CO and XCN ices) along lines of sight towards Galactic H $\small{II}$ regions, massive YSOs, and infrared diffuse sources. Even among those different kinds of astronomical objects, the abundance ratio of $CO_2$ to $H_2O$ ices does not vary significantly, suggesting that the pathway to $CO_2$ ice formation driven by UV irradiation is not effective at least among the present targets.

A Progress Report on the MMT/Hectospec Observation for M81 Fields

  • Sohn, Jubee;Ko, Youkyung;Lim, Sungsoon;Jang, In Sung;Lee, Myung Gyoon;Hwang, Narae;Kim, Sang Chul;Park, Hong Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2014
  • The M81 group is a nearby galaxy group hosted by M81, a twin galaxy of Milky Way. This galaxy group is considered as an ideal laboratory for near-field cosmology to understand mass assembly and evolution of galaxies in the group environment. We designed a project to investigate spectroscopic properties of globular cluster candidates in this group. We obtained spectra of globular cluster candidates using the MMT/Hectospec as a part of the K-GMT Science Program. Our main targets include globular cluster candidates of the M81 group member galaxies and those wandering in the intragroup region. We also observed supernova remnants and some background galaxies. Observing fields covered about 2 square degrees including three main galaxies of the M81 group. Using these spectra, we will identify globular clusters in the M81 group, and investigate their properties including age and metallicity. We will discuss the MMT/Hectospec data reduction processes, and future plan for this project.

  • PDF

The distribution of the molecular hydrogen in the Milky way

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2016
  • We present the far-ultraviolet fluorescent molecular hydrogen ($H_2$) emission map observed with FIMS/SPEAR for ~76% of the sky. The fluorescent $H_2$ emission is found to be saturated by strong dust extinction at the optically thick, Galactic plane region. However, the extinction-corrected intensity of fluorescent $H_2$ emission is found to have strong linear correlations with the well-known tracers of the cold interstellar medium, such as the E(B-V) color excess, neutral hydrogen column density N(HI), $H{\alpha}$ emission, and CO $J=1{\rightarrow}0$ emission. The all-sky molecular hydrogen column density map is also obtained using a photodissociation region model. We also derive the gas-to-dust ratio, hydrogen molecular fraction ($f_{H2}$), and $CO-to-H_2$ conversion factor ($X_{CO}$) of the diffuse interstellar medium. The gas-to-dust ratio is consistent with the standard value $5.8{\times}10^{21}atoms\;cm^{-2}mag^{-1}$, and the $X_{CO}$ tends to increase with E(B-V), but converges to the Galactic mean value $1.8{\times}10^{20}cm^{-2}K^{-1}km^{-1}s$ at optically thick regions with E(B-V)>2.0.

  • PDF

Low-Resolution Spectroscopy for the Intriguing Globular Cluster NGC 2808 : Chemical abundance patterns among subpopulations

  • Hong, Seungsoo;Lim, Dongwook;Han, Sang-Il;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.43.4-44
    • /
    • 2016
  • The presence of multiple stellar populations is now well established in most globular clusters (GCs) in the Milky Way. The origin of this phenomenon, however, is yet to be understood. In this respect, the study of NGC 2808, an intriguing GC which hosts subpopulations with extreme helium abundances, would help to resolve this problem. In order to investigate chemical abundance patterns among different subpopulations in this GC, we have performed low-resolution spectroscopy for the red-giant-branch (RGB) stars and measured CN & CH bands, and Ca line strength. We have identified at least three subpopulations from the CN abundance distribution. This GC shows CN-CH anti-correlation following the general trend among "normal" GCs. In addition, we have cross-matched our results with the high-resolution data in literature, and found a tight correlation between CN strength and sodium abundance. However, CN is anticorrelated with oxygen abundance, as expected from the well known N(&Na)-O anticorrelation. In this talk, we will discuss the implication of these results.

  • PDF

Radiative Transfer Model of Dust Attenuation Curves in Clumpy, Galactic Environments

  • Seon, Kwang-il;Draine, Bruce T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2016
  • The attenuation of starlight by dust in galactic environments is investigated through models of radiative transfer in a spherical, clumpy interstellar medium (ISM). We show that the attenuation curves are primarily determined by the wavelength dependence of absorption rather than by the underlying extinction (absorption+scattering) curve; the observationally derived attenuation curves cannot constrain a unique extinction curve unless the absorption or scattering efficiency is specified. Attenuation curves consistent with the Calzetti curve are found by assuming the silicate-carbonaceous dust model for the Milky Way (MW), but with the $2175{\AA}$ bump suppressed or absent. The discrepancy between our results and previous work that claimed the Small Magellanic Cloud dust to be the origin of the Calzetti curve is ascribed to the difference in adopted albedos; we use the theoretically calculated albedos whereas the previous ones adopted empirically derived albedos from observations of reflection nebulae. It is found that the model attenuation curves calculated with the MW dust are well represented by a modified Calzetti curve with a varying slope and UV bump strength. The strong correlation between the slope and UV bump strength, as found in star-forming galaxies at 0.5 < z < 2.0, is well reproduced if the abundance of the UV bump carriers is assumed to be 30-40% of that of the MW-dust; radiative transfer effects lead to shallower attenuation curves with weaker UV bumps as the ISM is more clumpy and dustier. We also argue that some of local starburst galaxies have a UV bump in their attenuation curves, albeit very weak.

  • PDF

Evolution of late-type galaxies in cluster environment: Effects of high-speed multiple interactions with early-type galaxies

  • Hwang, Jeong-Sun;Park, Changbom;Banerjee, Arunima;Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.46.1-46.1
    • /
    • 2017
  • Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the later. We thus perform numerical study on the evolution of a late-type galaxy falling radially toward the cluster center interacting with neighbouring early-type galaxies, using N-body, hydrodynamical simulations. Based on the information about the typical galaxy encounters obtained by using the galaxy catalog of Coma cluster, we run the simulations for the cases where a Milky Way Galaxy-like late-type galaxy, flying either edge-on or face-on, experiences six consecutive collisions with twice more massive early-type galaxies having hot gas in their halos. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the high-speed multiple collisions with the early-type galaxies, such as on the cold gas content and the star formation activity, particularly through the hydrodynamic interactions between the cold disk and the hot gas halos. By comparing our simulation results with those of others, we claim that the role of the galaxy-galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy-cluster interactions, depending on the dynamical history.

  • PDF

Secular Evolution of Nuclear Bulges through Sustained Star Formation

  • Kim, Sung-Soo S.;Saitoh, Takayuki;Jeon, Myoung-Won;Merritt, David;Figer, Donal F.;Wada, Keiich
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2010
  • Gas materials in the inner Galactic disk continuously migrate toward the Galactic center (GC) due to interactions with the bar potential, magnetic fields, stars, and other gaseous materials. In case of the Milky Way, those in forms of molecules appear to accumulate around 200 pc from the center (the central molecular zone, CMZ) to form stars there and further inside. The bar potential in the GC is thought to be responsible for such acculmulation of molecules and subsequent star formation, which is believed to have been continous throughout the lifetime of the Galaxy. We present 3-D hydrodynamic simulations of the CMZ that consider self-gravity, radiative cooling, and supernova feedback, and discuss the efficiency and role of the star formation in that region. We find that the gas accumulated in the CMZ by a bar potential of the inner bulge effectively turns into stars, supporting the idea that the stellar cusp inside the central 200 pc is a result of the sustained star formation in the CMZ. The obtained star formation rate in the CMZ, 0.03-0.1 Msun, is consistent with the recent estimate based on the mid-infrared observations by Yusef-Zadeh et al. We discuss the secular evolution of nuclear bulges in general, based on our results.

  • PDF

Spectroscopy Of Globular Clusters In M87

  • Kim, Soo-Young;Tamura, Naoyuki;Yoon, Seok-Jin;Sohn, Sang-Mo;Arimoto, Nobuo;Kodama, Tadayuki;Yamada, Yoshihiko;Lee, Young-Wook;Kim, Hak-Sub;Chung, Chul;Rey, Soo-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.31.2-31.2
    • /
    • 2010
  • We have performed a spectroscopic study of globular cluster (GC) system associated with the Virgo cD galaxy M87 using the Subaru/FOCAS MOS mode. We derive ages, metallicities and abundance ratios from the GC spectra using Simple Stellar Population (SSP) models. The metallicity distribution function (MDF) obtained empirically based on Milky Way GCs is consistent with the MDF derived from SSP models. A comparison with a meta-analysis using literature data sample of 15 other GC systems shows good agreement with our results. The properties of GCs acquired from the spectra will be used to test the recent theoretical prediction of a significant inflection along the colour-metallicity relations (Yoon et al. 2006). If confirmed, the non-linearity of the relations would shed new light on the interpretation of the GC colour bimodality. The robustness of our results is being tested against the choice of a SSP model, measurement errors and sample selection towards the goal of better understanding the formation history of GCs and host galaxy.

  • PDF

On the origin of Na-O anticorrelation in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2017
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters (GCs). Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic giant branch stars, are all locally retained in these less massive systems. We first applied these models to investigate the origin of super-helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second generation stars. Disruption of these "building blocks" in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field. Interestingly, we also find that the observed Na-O anticorrelation in metal-poor GCs can be reproduced, when multiple episodes of starbursts are allowed to continue in these subsystems. Specific star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, as would be expected from the orbital evolution of these subsystems in a proto-Galaxy. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function.

  • PDF

New insights on the origin of multiple stellar populations in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters. Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic-giant-branch stars, are all locally retained in these less massive systems. We find that the observed Na-O anti-correlations in metal-poor GCs can be reproduced when multiple episodes of starbursts are allowed to continue in these subsystems. A specific form of star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, which is in good agreement with the parameters obtained from our stellar evolution models for the horizontal-branch. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function. We also applied these models to investigate the origin of super helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second-generation stars. Disruption of proto-globular clusters in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field.

  • PDF