• 제목/요약/키워드: Milk protein

검색결과 1,342건 처리시간 0.022초

콩우유와 우유 혼합유의 단백질 안정성에 미치는 영향인자 (Factors Affecting on Protein Stability of Mixed Cow and Soy Milk)

  • 정남용;김우정
    • 한국식품영양학회지
    • /
    • 제7권4호
    • /
    • pp.345-352
    • /
    • 1994
  • High protein beverage of cow-soy milk was prepared by mixing the soymilk and commercial homogenized cow milk in the various ratios. Effect of heat treatment, pH and addition of calcium and sucrose was studied on the water-soluble nitrogen of cow-soy milk The heat-treated soymilk at 10$0^{\circ}C$ were centrifuged at the range of 830~29,900xg for 30 min and 11,200xg was found to be proper for determination of the degree of protein denaturation by centrifugal method. When soymilk was heated at 70~10$0^{\circ}C$ for 30~240 min, soluble nitrogen (QA SN) in supernatant of protein was decreased to 78.0~56.8% due to protein denaturation. Most of heat denaturation of protein was found to be occurred during Initial heating 10$0^{\circ}C$ for all mixed cow-soy milk. The sedimentation of SN was maximum at pH 4.0 In the range of pH 3~8. Addition of sucrose affected little on oASN while calcium addition reduced %SN significantly to approx. 55% for soymilk(100%). The effect of Ca was less as the ratio of cow milk increased.

  • PDF

마유의 영양적 특성 및 생리활성 성분 (Nutritional Characteristics and Bioactive Components in Mare Milk)

  • 장운기;정석근;한기성;설국환;박범영;함준상
    • Journal of Dairy Science and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.75-83
    • /
    • 2013
  • Mare milk is gaining importance because of its nutritional characteristics and therapeutic properties, which enable its use as part of the diet of the elderly, convalescents, and newborn infants. This review describes the functional and bioactive components of mare milk, such as proteins, carbohydrates, and lipids, and the characteristics such as acidification and released free amino acids of fermented mare milk. The protein profile of mare milk differs from that of bovine milk but is similar to that of human milk. The salt and lactose content in mare's milk is similar to that in human milk, but mare's milk has a significantly lower content of fat. Whey protein concentration is higher and casein content is much lower in mare milk than in bovine milk. These health-promoting properties indicate that mare milk and its derivatives could become valuable foods for elderly consumers in the form of probiotic beverages. Protein allergies related to and the potential industrial applications of mare milk have also been discussed in comparison with those of bovine milk. Although mare milk has diverse advantages if used as a nutritional food and has positive effects on health, further studies are required to enable its use as a complete substitute for human milk or as a health food.

  • PDF

젖소에서 유성분 분석을 통한 영양상태 평가 및 건강관리에 관한 연구 IV. 고능력우 위주의 대규모 목장에서 분만 후 첫 번째 유검정 성적과 제4위전위 질병과의 관련성 (Studies on health management and nutritional evaluation by milk components analysis in Holstein cows IV. The relationship between milk composition from the first test within 35 days in milk and displaced abomasum in a large dairy herd of high yielding Holstein cows)

  • 문진산;손창호;주이석;강현미;장금찬;김종만
    • 대한수의학회지
    • /
    • 제41권3호
    • /
    • pp.407-412
    • /
    • 2001
  • Milk data may be increasingly used as indicators of the protein-energy balance and actual farm feeding practices. It was related to milk production, nutritional and reproductive disorders. The purpose of this study was to investigate the relationship between level of fat, protein or milk urea nitrogen (MUN) from the first test within 35 days in milk and displaced abomasum (DA) in a large dairy herd with high yielding Holstein cows. Milk data from forty-five DA cases were compared to those from 90 healthy cows. Higher odds of DA diagnosis was found with higher 5.0% milk fat, lower 3.0% milk protein. Therefore, cows with a fat to protein ratio of>1.5 had higher risks for DA. Also, incidence rates of DA was higher in the cows which the level of MUN was lower than 12.0 mg/dl or higher than 25.0 mg/dl relative to healthy cows. These results indicate that cows diagnosed with DA were energy deficient prior to DA diagnosis. We conclude that level of fat, protein or MUN serve as a monitoring tool of protein and energy nutritional balance in early lactation cows and also as a significant predictor of risk for DA.

  • PDF

Holstein 젖소에 있어서 유량 및 유성분에 미치는 환경 및 생리적 요인 (Environmental and Physiological Factors on Milk Yields and Compositions of Holstein Cows in Korea)

  • 한광진;안종호;이득환
    • Journal of Animal Science and Technology
    • /
    • 제46권3호
    • /
    • pp.335-346
    • /
    • 2004
  • 본 연구는 MUN 함량과 관련하는 사양관리적 요인 및 착유우 자체의 생리적요인을 알아보고 또한 이것이 유생산 능력과 어떠한 관계가 있는지 알아보기 위하여 수행하였다. 본 연구에 이용된 자료는 1999년부터 2002년까지 농협중앙회에서 수행한 129,645두로부터 조사된 890,434 기록의 산유능력검정 자료를 이용하였으며 매 검정일 유량, 3.5% 지방보정유량, MUN함량 및 검정일 체세포 지수에 대한 최적통계모형을 적합하여 이들간의 관계를 규명하였다. 분석 결과 여름철에 MUN 함량이 가장 높았다. 이러한 MUN 함량은 유량과 고도의 비선형적인 정의 관계가 있는 것으로 추정되었다. MUN 함량 21${\sim}$24mg/dl에서 산유량이 가장 많았고 MUN 함량이 24mg/dl 이상일 경우에는 유량이 감소하는 경향을 보였다. 또한 MUN 함량은 산치와 상호 관련성이 있는 것으로 조사 되었는데, 산차가 증가할수록 MUN 함량은 증가하였으며 3${\sim}$4산에서 MUN 함량이 많은 것으로 추정되었다. 또한 MUN 함량은 체세포 수와도 밀접한 관계가 있는 것으로 분석되었는데 MUN 함량이 21${\sim}$24mg/dl에서 체세포 지수가 가장 적은 것으로 추정되었으며 MUN 함량과 SCS간에는 부의 상관관계가 있는 것으로 분석되었다. 유지방율 및 유단백율은 각 유기별, 분만년도별, 계절별, 착유일 및 우유내 요질소 함량에 따라 크게 영향을 받는 것으로 조사되었다. 여름철에 MUN이 증가하는 반면 유지방율 및 유단백율이 가장 낮은 것으로 조사되었다. 특히 유단백율은 비유일이 경과됨에 따라 점차 감소하였는데 각 산차별 MUN과 유단백율과의 관계는 모든 산차에서 MUN이 증가함에 따라 유단백율이 감소하였다. 특히 이러한 감소의 크기는 3산차에서 가장 큰 것으로 나타났다. 이는 사료내 에너지와 단백질의 균형적인 공급이 우유내 MUN과 유단백율의 비율에 지대한 영향을 미쳤기 때문인 것으로 사료되었다.

Increased Amino Acid Absorption Mediated by Lacticaseibacillus rhamnosus IDCC 3201 in High-Protein Diet-Fed Mice

  • Hayoung Kim;Jungyeon Kim;Minjee Lee;Hyeon Ji Jeon;Jin Seok Moon;Young Hoon Jung;Jungwoo Yang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권4호
    • /
    • pp.511-518
    • /
    • 2023
  • The use of dietary protein products has increased with interests in health promotion, and demand for sports supplements. Among various protein sources, milk protein is one of the most widely employed, given its economic and nutritional advantages. However, recent studies have revealed that milk protein undergoes fecal excretion without complete hydrolysis in the intestines. To increase protein digestibility, heating and drying were implemented; however, these methods reduce protein quality by causing denaturation, aggregation, and chemical modification of amino acids. In the present study, we observed that Lacticaseibacillus rhamnosus IDCC 3201 actively secretes proteases that hydrolyze milk proteins. Furthermore, we showed that co-administration of milk proteins and L. rhamnosus IDCC 3201 increased the digestibility and plasma concentrations of amino acids in a high-protein diet mouse model. Thus, food supplementation of L. rhamnosus IDCC 3201 can be an alternative strategy to increase the digestibility of proteins.

THE RELATIONSHIP BETWEEN MILK PROTEIN PHENOTYPES AND LACTATION TRAITS IN AYRSHIRES AND JERSEYS

  • Kim, S.;Ng-Kwai-Hang, K.F.;Hayes, J.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권6호
    • /
    • pp.685-693
    • /
    • 1996
  • A total of 3,610 Ayrshire and 1,711 Jersey cows were phenotyped for the genetic variants of ${\alpha}_{s1}$-casein, ${\beta}$-casein, $\chi$-casein, ${\beta}$-lactoglobulin and ${\alpha}$-lactalbumin. Least squares analyses showed possible associations between milk protein phenotypes and lactational production traits. Depending on lactation number, ${\beta}$-casein phenotypes in Ayrshires were associated with milk production ($A^2A^2$ > $A^1A^2$ > $A^1A^1$), and with milk protein content. In the third lactation, Ayrshire cows with ${\beta}$-casein $A^1A^1$ produced milk with 3.43% fat compared to 3.37% fat for ${\beta}$-casein $A^2A^2$. In Ayrshire, $\chi$-casein phenotypes affected the protein content during the three lactations (BB > AB > AA) and ${\beta}$-lactoglobulin phenotypes significantly influenced the milk fat during the first lactation (4.06% for AA and 3.97% for BB). In Jerseys, protein content of milk was influenced by phenotypes of ${\alpha}_{s1}$-casein(3.98% for CC v/s 3.86% for BB in the first lactation). In the third lactation, $\chi$-casein AA of Jersey milk contained 5.35% fat compared to 4.82% for phenotype BB. The effects of ${\beta}$-lactoglobulin phenotypes on protein content were apparent in Jerseys during the second lactation with the A variant being superior to the B (4.00% for AA v/s 3.87% for BB).

Effect of Dietary Energy and Protein Contents on Buffalo Milk Yield and Quality during Advanced Lactation Period

  • Bovera, F.;Calabro, S.;Cutrignelli, M.I.;Di Lella, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권5호
    • /
    • pp.675-681
    • /
    • 2002
  • Among Italian buffalo farmers, it is widely held that administering diets with high energy and protein concentrations is an effective way to increase milk production. In order to assess the validity of this opinion, we verified milk yield and physico-chemical characteristics from buffaloes that, from the $5^{th}$ month of lactation, were fed two total mixed rations (TMRs) which, given the same intake, should have led to satisfaction of protein requirements though with a slight energy deficit (diet A) or excessive amounts of energy and protein (diet B). Estimate of the energy and protein value of the diets and that of the corresponding requirements was carried out both by using two software programs derived from the Cornell Net Carbohydrate and Protein System (1992), and with the method set up by INRA researchers (1988). The results obtained show that the two diets administered did not result in significant changes to the quantity of milk produced. However, with Diet B the protein concentration in the milk was significantly (p<0.01) higher, although this was partly offset by the higher concentration (p<0.05) of non-protein nitrogen (NNP). The Group B buffaloes also showed significantly higher blood urea levels (p<0.01), with concentrations exceeding those considered physiological for lactating buffaloes. Finally, while administering Diet A the Body Condition Score (BCS) was close to 6.5 (Wagner et al., 1988), whereas in buffaloes which used Diet B it sometimes increased by over 0.5 points. As regards which of the two methods compared is more suitable for expressing dietary energy and protein value and corresponding requirements, we feel that due to the high variability in the Italian Mediterranean buffalo's milk production aptitude, it would be premature to express a judgement on methods which rest on a common scientific base and do not differ substantially.

Milk production and composition of conventional and organic-fed Holstein dairy cows as affected by temperature and relative humidity

  • Joo, Jong Gwan;Nogoy, Kim Margarette C.;Park, Jihwan;Chon, Sunil;Lee, Dong Hoon;Choi, Seong Ho
    • 농업과학연구
    • /
    • 제48권1호
    • /
    • pp.45-57
    • /
    • 2021
  • This study aimed to determine the effects if ambient temperature (Ta), relative humidity (RH), and temperature-humidity index (THI) on milk production parameters such as milk yield, fat, protein, milk urea nitrogen (MUN), and lactose. A total of fifty (50) mid-lactating Korean Holstein cows (144 - 150 days postpartum) were randomly assigned to two groups in equal numbers (n = 25) according to the type of diet received: conventional feed, a mixture of 56: 44 ratio of roughage and concentrate mix, and organic feed containing 100% organic roughage. Temperature, RH, and THI were recorded daily and averaged monthly. Conventional group showed higher dry matter intake throughout the experiment and thus, showed higher total milk yield and milk composition such as milk fat, protein, and lactose content than organic milk. Milk of the conventional group showed higher polyunsaturated fatty acid concentration. Highest milk yield was observed in September (21.7℃, 82.4%RH) in conventional group (27.69 kg·day-1) and in June (21.4℃, 72.9%RH) in organic group (14.31 kg·day-1). In conventional group, milk yield was positively correlated with Ta and THI, and milk protein was negatively correlated with Ta, RH, and THI. In organic feeding, only the MUN among milk composition parameters showed a significant correlation where it showed a negative correlation with Ta, RH, and THI. Conventional feeding showed significantly higher milk yield, fat, protein, and lactose than organic feeding throughout the experiment, although, organic feeding showed to be less likely affected by Ta, RH, and THI than the conventional feeding.

증편 제조시 콩물과 반죽 내의 $\alpha$-amylase활성 및 특성에 관한 연구 (The Activity and Characteristics of $\alpha$-Amylase Present in Soy Milk and Jeungpyun Batters)

  • 나한나;윤선;김정수;김보영
    • 한국식품조리과학회지
    • /
    • 제14권3호
    • /
    • pp.261-265
    • /
    • 1998
  • 증편의 발효시 일어나는 이.화학적 성질의 변화는 발효 중 생성되는 $\alpha$-amylase의 활성과 밀접한 관계를 가지고 있을 것이다. 이에 본 연구에서는 콩물과 발효시간에 따른 증편 반죽 내의 $\alpha$-amylase 활성과 특성을 측정하였다. 콩물과 증편 반죽에는 생전분과 호화전분을 기질로 하는 $\alpha$-amylase가 존재함이 밝혀졌다. 콩물 $\alpha$-amylase 의 호화전분과 생전분에 대한 $\alpha$-amylase의 비활성도는 각각 0.79 units/mg protein, 0.036 units/mg protein 이었다. 콩물의 $\alpha$-amylase는 호화전분과 생전분에 대해 pH 5.92, 6.87과 6$0^{\circ}C$에서 최대 활성을 나타내었다. 증편 반죽의 호화전분과 생전분에 대한 $\alpha$-amylase의 최적 pH는 5.25였고 최적 온도는 5$0^{\circ}C$였다. 증편 반죽내의 $\alpha$-amylase의 활성은발효 시간에 대해 일정한 경향을 가지고 있지 않았다. 콩물을 첨가한 반죽의 호화전분에 대한 $\alpha$-amylase의 비활성도는 평균 25.59 units/mg protein이었고 생전분에 대한 $\alpha$-amylase의 비활성도의 평균은 1.37 units/mg protein이었다. 콩물을 첨가하지 않은 반죽에서의 호화전분과 생전분에 대한 $\alpha$-amylase의 비활성도는 각각 3.37 units/mg protein, 0.49 units/mg protein이었다. $\alpha$-amylase의 활성은 기질에 상관없이 콩물 첨가한 군이 그렇지 않은 군보다 유의적으로 높았다(p<.05).

  • PDF

우유의 기능성 (Functional Properties of Milk)

  • 진현석
    • Journal of Dairy Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 1999
  • Milk is a first food for as long as the mammalian race has existed. A characteristic unique to mammal is their ability to secrete milk as a source of nutrients and immunological protection for their young. From a nutitrional viewpoint, milk has heen described as nature's most perfect food, owing mainly to its biological role as the only source of nutrition for the infant mammal. Milk is estimated to contain more than 100,000 molecular species, However, the average contents of milk can be simplified to 3.4% fat, 3.1% protein (80% casein protein and 20% whey protein), 4.5% lactose, and 0.7% ash. Chemically, milk is a very complex fluid rich in nutrients, antibodies, growth factors, antimicrobial components etc. This report will discuss functional properties of milk components, such as lactoferrin, opoid peptide, CPP, cGMP and sialic acid etc.

  • PDF