• Title/Summary/Keyword: Mild hybrid vehicle

Search Result 23, Processing Time 0.019 seconds

Development of GaN-FET based Bidirectional Converter for Mild Hybrid Vehicle (GaN-FET을 적용한 마일드 하이브리드 전기차용 양방향 컨버터 개발)

  • Lee, Seung Jun;Lee, Sang Hyeok
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.223-224
    • /
    • 2017
  • 본 논문에서는 GaN-FET을 적용한 12V-48V 컨버터를 제안하고 차량용 컨버터로서의 장점을 확인한다. GaN-FET의 주요 특징은 고속 스위칭이 가능하다는 것이고 이를 차량용 컨버터에 적용 시 다음의 장점을 지닌다. 첫째, 컨버터의 소형화 및 경량화이다. 고속 스위칭에 의한 리플전류 감소로 인덕터의 크기를 감소시킨다. 둘째, 출력 커패시터 선택의 폭이 넓어진다. 리플전류의 감소로 인해 비교적 작은 용량의 출력 커패시터와 큰 ESR의 선정이 가능하다. 마지막으로, 소형, 경량화된 전력소자에 의해 진동 내구성 관련 기구설계의 단가를 줄일 수 있다. 위의 내용은 고속 스위칭에 따른 이점으로 축약 설명할 수 있고 이에 컴퓨터 시뮬레이션 및 실험을 통해 고속 스위칭의 가능성을 증명한다.

  • PDF

Characteristic Analysis and Comparison of IPMSM for HEV According to Pole and Slot Combinations (극 수와 슬롯 수 조합에 따른 HEV용 IPMSM의 특성 비교 및 분석)

  • Jung, Jae-Woo;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1017-1018
    • /
    • 2007
  • Interior permanent magnet synchronous motor (IPMSM) for traction motor in the hybrid electric vehicle (HEV) has different parameters and characteristics according to pole and slot combinations. The fitting combination of pole and slot in the IPMSM improves characteristics of traction system ultimately. This paper deals with analyzing the characteristics of IPMSM for mild type HEV according to pole and slot combinations. Based on the result of characteristics, suitable pole and slot combination is presented to maximize efficiency of traction motor in the HEV system.

  • PDF

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF