• Title/Summary/Keyword: Mihocheon (Stream)

Search Result 4, Processing Time 0.018 seconds

Inquiry of Water Environment in Mihocheon (Stream) - Water Quality Monitoring focused on TOC - (미호천의 물 환경 탐구 - TOC를 중심으로 한 수질모니터링 -)

  • Lyu, Jai Hong;Lee, Du Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.731-739
    • /
    • 2007
  • In this study, water quality monitoring focused on TOC was performed at 5 points in Mihocheon (Stream) from January to December 2006. And 10 parameters (water temperature, pH, DO, EC, turbidity, SS, BOD, $PO_4-P$, TOC, TN) were monitored every month for one year. According to this study, TOC increased towards the lower stream (#4~#5). Correlation coefficients between TOC and DO, EC, turbidity, SS, BOD, $PO_4-P$, TN were -0.126, 0.351, 0.320, 0.286, 0.711, 0.525, 0.666. TOC was highly related to BOD. As a result of linear regression analysis, regression equation between BOD and TOC was BOD=0.58TOC+1.90 ($R^2=0.506$). In Mihocheon (Stream), BOD/TOC ratio decreased towards the lower stream. This results show decrease of ratio of biodegradable organic material to total organic pollutants towards the lower stream. This study is significant since it has revealed the potential value of TOC as organic material indicator for inquiry of water quality characteristics in the natural water system.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

Health Condition Assessment Using the Riparian Vegetation Index and Vegetation Analysis of Geumgang mainstream and Mihocheon (수변식생지수를 이용한 금강본류와 미호천의 건강성 평가 및 식생분석)

  • Lee, Seung-Yeon;Jang, Rae-Ha;Han, Young-Sub;Jung, Young-Ho;Lee, Soo-In;Lee, Eung-Pill;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.105-117
    • /
    • 2018
  • This study conducted health assessment and multivariate vegetation analysis using the riparian vegetation index in 30 sites of the Geumgang mainstream and Mihocheon to obtain practical data on the river management of the Geumgang. The result showed that the number of plant communities was 54. The flora was 75 families, 185 genera, 243 species, 2 subspecies, 21 varieties, 2 varieties, and 268 taxa. The riparian vegetation index was 38.3 (3.3; G-D1 ~ 66.7; G-U2, G-U4, and G-M3), and the health of the rivers in this area was evaluated as normal (grade C). The health of rivers was the highest in the upper stream of Geumgang mainstream and lowest in the downstream of Geumgang mainstream. The relationship between riparian vegetation index and chlorophyll-a content was low. The riparian vegetation was divided into five groups of Digitaria ciliaris colony group, Salix gracilistyla colony group, Erigeron annuus colony group, the group dominated by Humulus japonicus, Salix koreensis, Miscanthus sacchariflorus, and Phragmites japonica colonies, and the group dominated by Conyza canadensis and Echinochloa crusgalli var. echinata colonies. They had the similar health conditions. The CCA analysis showed that the environmental factors affecting the distribution of vegetation were physical factors such as vegetation area, artificial structure area, waterway area, branch width, channel width, and bank height and the biological factors such as the number of species. As such, it is necessary to maintain the health condition through continuous monitoring where the health condition is high and to apply active measures such as ecological restoration where the health condition is low.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.