• 제목/요약/키워드: Mie-scattering theory

검색결과 22건 처리시간 0.027초

LABORATORY SIMULATION OF LIGHT SCATTERING FROM REGOLITH ANALOGUES: EFFECT OF POROSITY

  • KAR, AMRITAKSHA;DEB, SANJIB;SEN, A.K.;GUPTA, RANJAN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.65-67
    • /
    • 2015
  • The surfaces of most atmosphereless solar system objects are referred to as regolith, layers of loosely connected fragmentary debris, produced by meteorite impacts. Measurements of light scattered from such surfaces provides information about the composition and structure of the surface. A suitable way to characterize the scattering properties is to consider how the intensity and polarization of scattered light depends on the particle size, composition, porosity, roughness, wavelength of incident light and the geometry of observation. In the present work, the effect of porosity on bidirectional reflectance as a function of phase angle is studied for alumina powder with grain size of $0.3{\mu}m$ and olivine powder with grain size of $49{\mu}m$ at 543.5 nm. The optical constants of the alumina sample for each porosity were calculated with Maxwell Garnett effective medium theory. On using each of the optical constants of alumina sample in Mie theory with the Hapke model the variation of bidirectional reflectance is obtained as a function of phase angle with porosity as a parameter. Experimental reflectance data are in good agreement the model. For the olivine sample the effect of porosity is studied using Hapke (2008).

광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(I) - 화염온도의 영향 - (An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (I) - Effects of Flame Temperature -)

  • 조재걸;이정훈;김현우;최만수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1139-1150
    • /
    • 1999
  • The evolution of silica aggregate particles in coflow diffusion flames has been studied experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Of particular interests are the effects of flame temperature on the evolution of silica aggregate particles. As the flow rate of $H_2$ increases, the primary particle diameters of silica aggregates have been first decreased, but, further increase of $H_2$ flow rate causes the diameter of primary particles to increase and for sufficiently larger flow rates, the fractal aggregates finally become spherical particles. The variation of primary particle size along the upward jet centerline and the effect of burner configuration have also been studied.

The Effect of Second Order Refraction on Optical Bubble Sizing in Multiphase Flows

  • Qiu, Huihe;Hsu, Chin-Tsau;Liu, Wei
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1801-1807
    • /
    • 2001
  • In multiphase flne the bubble size and velocity. To achieve this, one of approaches is to utilize laser phase-Doppler anemometry. However, it was found that the second order refraction has great impact on PDA sizing method when the relative refractive index of media is less than one. In this paper, the problem of second order refraction is investigated and a model of phase-size correlation to eliminate the measurement errors is introduced for bubble sizing. As a result, the model relates the assumption of single scattering mechanism in conventional phase-Doppler anemometry. The results of simulations based on this new model by using Generalized Lorenz Mie Theory (GLMT) are compared with those based on the conventional method. An optimization method for accurately sizing air-bubble in water has been suggested.

  • PDF

복사전달방정식을 활용한 안개 조건에서의 휴대용 대공 유도미사일 Lock-on range에 대한 이론적 분석 (Theoretical Analysis of the Lock-on Range of a Man-portable Air Defense System Under Foggy Conditions with the Radiative-transfer Equation)

  • 석인철;이창민;한재원
    • 한국광학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2019
  • 휴대용 대공유도 미사일(Man-Portable Air Defense System)은 플룸의 중적외선 신호를 추적하는 적 항공기의 대응무기체계이다. 안개 조건에서 입자들에 의한 다중 산란현상은 중적외선 파장에서의 투과율과 휴대용 대공유도 미사일 탐지성능에 영향을 준다. 그러므로 본 연구에서 다양한 안개조건과 플룸의 특성에 따른 휴대용 대공유도 미사일의 lock-on range를 분석한다. 안개 조건에서의 광학적 소멸특성과 투과율을 분석하기 위해 미산란(Mie scattering) 이론과 복사전달방정식의 분석적 해를 활용하였다. 뿐만 아니라 중적외선 대체광원으로서 섬광탄 화염 신호를 운용했다. 다양한 시정 및 화염 온도조건에서 분석된 lock-on range는 mist 조건에서 크게 감소하며, 화염 온도가 높아질수록 증가하는 것으로 확인하였다.

화염 열복사의 파장별 선택적 반사를 위한 도료 코팅에 대한 수치적 연구 (Numerical study of a coating with pigment to selectively reflect the thermal radiation from fire)

  • 변도영;백승욱
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.399-407
    • /
    • 1998
  • The infrared reflection coatings with pigment can be used to protect the surfaces of combustible materials exposed to fire. To obtain high reflectivities in the infrared range (0.5-10.mu.m) important to fire, several dielectric pigments, such as titanium dioxide, iron oxide, and silicon, can be synthesized to polymer coatings. The theoretical analysis shows that the coating design with particles diameter in the 1.5 to 2.5.mu.m range and volume fraction in the 0.1 to 0.2 range is estimated to be optimal. In the analysis of the radiation, the dependent scattering, absorption by polymeric binder, and the internal interface reflection are considered. In addition, the temperature distribution in the semi-transparent coating layer and an opaque substrate (PMMA) is also presented.

PHASE VARIATION IN DOPPLER SIGNAL FOR VARIOUS OPTICAL PARAMETERS

  • Son, Jung-Young;Kim, Myung-Sik;Oh, Myung-Kwan
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.629-632
    • /
    • 1989
  • The scattered light intensity from a spherical particle passing through the cross-over region of two coherent laser beams, varies periodically. Photodetection of this light beams produces a periodic signal of varying amplitude. The phase of the signal varies with the particle size and refractive index, the beam crossing angle and wavelength, and the position and size of the scattered ligth collecting aperture. In this paper the phase variation with respect to the particle absorptive index of retraction, collecting lens size and beam crossing angle is calculated using both Mie scattering theory and reflection theory. The two theories show good agreement in phase predictions, especially for large absorptive indices and for small collection lenses. Both theories predict phase to be inversely proportional to the beam crossing angle.

  • PDF

광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 - (An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion -)

  • 조재걸;이정훈;김현우;최만수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

서울시의 1993년 가을 스모그 특성모사 (Modeling of Smog Characteristics in Seoul during the Fall,1993)

  • 백남준;이성준;김용표;문길주;조영일
    • 한국대기환경학회지
    • /
    • 제10권2호
    • /
    • pp.137-145
    • /
    • 1994
  • A visibility analysis model based on the Mie theory is applied to the measurements during the fall, 1993 in Seoul. Model estimations of the total extinction coefficient $b_{ext}$, and the particle scattering coefficient, $b_{sp}$ are in good agreement with the measured values by a transmissometer and a nephelometer, respectively. These values show strong dependency on the mass loading of fine particles( $D_{p}$ <3.0${\mu}{\textrm}{m}$) but show no apparent relation with that of coarse particles(3.0${\mu}{\textrm}{m}$$D^{p}$ <10${\mu}{\textrm}{m}$). Relative humidity plays an important role in determining the size of particles which in turn, affects the optical efficiency of aerosol. Based on the composition analysis with cut size nitrate concentration is higher than the sulfate concentration in PM3-10 but they are comparable to each other in PM3. Considering in 1985, it demonstrates a drastic increase of nitrate concentration between 1985 and 1993. It is found that measured and estimated light extinction budget were in good agreement within 10% and that scattering by particles is responsible for about 50-55% and 70-80 % of total extinction during clear and smoggy periods respectively.y.

  • PDF

Phase dependent disk averaged spectra and light curve of the Earth as an habitable exoplanet : Ray-tracing based simulation using 3D optical earth system model

  • 류동옥;김성환;성세현
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.108.1-108.1
    • /
    • 2012
  • Previously we introduced ray-tracing based 3D optical earth system model for specular and scattering properties of all components of the system (i.e. clear-sky atmosphere, land surfaces and an ocean surface). In this study, we enhanced 3-dimensional atmospheric structure with vertical atmospheric profiles for multiple layer and cloud layers using Lambertian and Mie theory. Then the phase dependent disk averaged spectra are calculated. The main results, simulated phase dependent disk averaged spectra and light curves, are compared with the 7 bands(300~1000nm) light curves data of the Earth obtained from High Resolution Instrument(HRI) in Deep Impact spacecraft during Earth flyby in 2008. We note that the results are comparable with the observation.

  • PDF

Selection of a Remote Phosphor Configuration to Enhance the Color Quality of White LEDs

  • Anh, Nguyen Doan Quoc;Le, Phan Xuan;Lee, Hsiao-Yi
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.78-85
    • /
    • 2019
  • The remote phosphor structure has been proven to bear greater luminous efficiency than both the conformal phosphor and in-cup phosphor structures; however, controlling its color quality is much more challenging. To solve this dilemma, various researchers have proposed dual-layer phosphor and triple-layer phosphor configuration as techniques to enhance the display brightness of white LEDs (WLEDs). Likewise, this study picked one of these configurations to utilize in multichip WLEDs with five distinct color temperatures in the range from 5600 to 8500 K, for the purpose of improving the optical properties of WLEDs, such as color rendering index (CRI), color quality scale (CQS), luminous efficacy (LE), and chromatic homogeneity. According to the results of this research, the triple-layer phosphor configuration has superior performance compared to other configurations in terms of CRI, CQS, and LE, and yields higher chromatic stability for WLEDs.