• 제목/요약/키워드: Midbrain

검색결과 147건 처리시간 0.029초

육미지황탕(六味地黃湯)이 뇌조직(腦組織)의 생화학적(生化學的) 변화(變化)에 미치는 영향(影響) (Effects of Yukmijihwangtang on the Biochemical Changes in Brain Tissue)

  • 이영구;이인;문병순
    • 대한한방내과학회지
    • /
    • 제18권2호
    • /
    • pp.94-111
    • /
    • 1997
  • The present experiment was designed to examine catecholamines, serotonine, amino acids, malondialdehyde and free radical scavenging activity, by administering Yukmijihwangtang extract of a variety of concentraction to senile brain. The results were summarized as followings: 1. Yukmijihwangtang significantly increased noradrenaline in the striatum, hypothalamus, midbrain and pons-medulla oblongota of the brain tissue of senile rats, and even though Yukmijihwangtang increased noradrenaline also in other brain tissue, there was no significance. 2. Yukmijihwangtang significantly increased dopamine in the striatum, hypothalamus and midbrain of the brain tissue of senile rats, and even though Yukmijihwangtang increased dopamine also in other brain tissue, there was no significance. 3. Yukmijihwangtang significantly increased serotonine in the pons- medulla oblongata and cerebellum of the brain tissue of senile rats, and even though Yukmijihwangtang increased serotonine also in the other brain tissue except hypothalamus and midbrain, there was no significance. 4. Yukmijihwangtang significantly increased amino acid in the brain tissue of senile rats. 5. Yukmijihwangtang significantly decresed malondialdehyde and free radical in the brain tissue of senile rats. According to the above results, Yukmijihwangtang is assumed to improve brain function by reacting on biochemical of the senile brain, and that Yukmijihwangtang can be used to treat regressive brain disease carrying symptoms of psychoactive disorders.

  • PDF

The Nigrostriatal Tract between the Substantia Nigra and Striatum in the Human Brain: A Diffusion Tensor Tractography Study

  • Yeo, Sang Seok;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • 제32권6호
    • /
    • pp.388-390
    • /
    • 2020
  • Objectives: The nigrostriatal tract (NST) connect from the substantia nigra pars compacta to the striatum. A few previous studies have reported on the NST in the Parkinson's disease using a proboblistic tractography method. However, no study has been conducted for identification of the NST using streamline DTT technique. In the current study, we used streamline DTI technique to investigate the reconstruction method and characteristics of the NST in normal subjects. Methods: Eleven healthy subjects were recruited in this study. The NST from the substantia nigra of the midbrain and the striatum of basal ganglia was reconstructed using DTI data. Fractional anisotropy, apparent diffusion coefficient (ADC) values and fiber numbers of the NST were measured. Results: In all subjects, the NST between the substantia nigra of the midbrain and the striatum. Mean values for FA, ADC, and tract volume were 0.460, 0.818, and 154.3 in the right NST, and 0.485, 0.818, and 176.3 in the left NST respectively. Conclusions: we reconstructed the NRT from the substantia nigra of the midbrain and the striatum of the basal ganglia using streamline tractography method. We believe that the findings and the proposed streamline reconstruction method of this study would be useful in future researches on the NST of the human brain.

Somatodendritic organization of pacemaker activity in midbrain dopamine neurons

  • Jinyoung Jang;Shin Hye Kim;Ki Bum Um;Hyun Jin Kim;Myoung Kyu Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권2호
    • /
    • pp.165-181
    • /
    • 2024
  • The slow and regular pacemaking activity of midbrain dopamine (DA) neurons requires proper spatial organization of the excitable elements between the soma and dendritic compartments, but the somatodendritic organization is not clear. Here, we show that the dynamic interaction between the soma and multiple proximal dendritic compartments (PDCs) generates the slow pacemaking activity in DA neurons. In multipolar DA neurons, spontaneous action potentials (sAPs) consistently originate from the axon-bearing dendrite. However, when the axon initial segment was disabled, sAPs emerge randomly from various primary PDCs, indicating that multiple PDCs drive pacemaking. Ca2+ measurements and local stimulation/perturbation experiments suggest that the soma serves as a stably-oscillating inertial compartment, while multiple PDCs exhibit stochastic fluctuations and high excitability. Despite the stochastic and excitable nature of PDCs, their activities are balanced by the large centrally-connected inertial soma, resulting in the slow synchronized pacemaking rhythm. Furthermore, our electrophysiological experiments indicate that the soma and PDCs, with distinct characteristics, play different roles in glutamate-induced burst-pause firing patterns. Excitable PDCs mediate excitatory burst responses to glutamate, while the large inertial soma determines inhibitory pause responses to glutamate. Therefore, we could conclude that this somatodendritic organization serves as a common foundation for both pacemaker activity and evoked firing patterns in midbrain DA neurons.

선천성 고혈압 쥐에서 고혈압 지속현상과 중추신경계 노르아드레날린성 신경활성과의 상관성 (Relationship between Maintenance of Hypertension and Central Noradrenergic Nervous System Activity in Spontaneously Hypertensive Rats)

  • 고광호;신재수;김미영
    • 약학회지
    • /
    • 제30권6호
    • /
    • pp.334-342
    • /
    • 1986
  • The relationship between the maintenance of hypertension and the central noradrenergic nervous system activity in spontaneously hypertensive rats (SHR) was studied. The norepinephrine turnover rates in 5 brain areas; telencephalon, hypothalamus/thalamus, midbrain, pons/medulla, cerebellum as a measure of noradrenergic neuronal activity were measured at the ages of 14 weeks in SHR and normotensive Wistar rats. In 14-week old SHR, blood pressure was significantly higher than in normotensive rat, and central norepinephrine turnover rates were significantly greater in telencephalon, hypothalamus/thalamus, midbrain. There were no differences between norepinephrine turnover rates in pons/medulla, cerebellum of SHR and those of normotensive rats.

  • PDF

The Relationship between Hypertension and Central Serotonergic Nervous System Activity in Spontaneously Hypertensive Rats

  • Kim, Sung-Jin;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • 제11권4호
    • /
    • pp.301-307
    • /
    • 1988
  • Relationship between the maintenance of hypertension and central serotonergic nervous system activity in opontaneously hypertensive rats (SHR) was studied. Serotonin turnover-rates were measured in 5 brain areas as an index of serotonergic neuronal activity and compared at the ages of 14 weeks in two types of animals; (1) spontaneously hypertensive rats (SHR) (2) normotensive wistar kyoto rats (WKY). In 14-week old SHR, central serotonin turnover rate was significantly lower in telencephalon, hypothalamus/thalamus and midbrain than normotensive rat, but significantly higher in cerebellum. There were no significant differences between serotonin turnover rate in pons/medulla of SHR and that of normotensive rat. THese data suggest that the abnormally lower turnover rates of serotonin in telencephalon, hypothalamus/thalamus and midbrain may be one of the underlying neuronal factors for manifestation of hypertension in SHR.

  • PDF

A Parkinsonism as a Component of Sylvian Aqueduct Syndrome : Effect of Floating Cranioplasty and Distal Catheter Elongation

  • Park, Jung-Jae;Park, Byung-Hyun;Lee, Hyun-Sung;Lee, Jong-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제39권6호
    • /
    • pp.438-442
    • /
    • 2006
  • The sylvian aqueduct syndrome is a global rostral midbrain dysfunction induced by a transtentorial pressure gradient through the aquaeductus. Several months after ventriculoperitoneal shunt, a patient with hydrocephalus began experiencing a constellation of midbrain dysfunction symptoms, including bradykinesia, medial longitudinal fasciculus syndrome, third nerve palsy, and mutism. These were indicative of cerebral aqueduct syndrome. In addition, the patient showed posture-dependent underdrainage or overdrainage. All symptoms were resolved after distal catheter elongation and floating cranioplasty. We present a case of reversible parkinsonism, which developed in a patient with shunted hydrocephalus and aqueductal stenosis, and discuss the diagnosis and treatment of the sylvian aqueduct syndrome. We also review the literature to address problems of drainage and potential treatment modalities.

Selective Toxicity to Central Serotonergic Nervous System in Prenatally and Postnatally Lead-Exposed Rats

  • 서동욱;정은영;정재훈;신찬영;오우택;고광호
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.335-335
    • /
    • 1994
  • Possibility whether lead ingestion can cause selective toxicity to central serotonergic nervous system in rats was tested. Three groups of wistar rats; 1)Control, 2) Low dose and 3) High dose groups, were prepared. In prenatally lead-exposed rats, until parturition from dams, rat pups were intoxicated via placenta of mother rats having received drinking water containing either 0%(control ), 0.05%(low dose) or 0.2%(high dose) of lead acetate respectively, In postnatally lead-exposed rats, right after parturition from dams rat pups received drinking water containing either 0% (control), 0.05%(low dose) or 0.2%(high dose) of lead acetate. At 2, 4, 6 and 8 weeks of age, tryptophan hydroxylase (TPH) activity and Na$\^$+//K$\^$+/-ATPase activity were measured in 4 areas of rat brain; Telencephalon, Diencephalon, Midbrain and Pons/Medulla. TPH activities were assayed by modified method of Beevers et al. (1983) using L-(5-$^3$H)-tryptophan as substrate. TPH activity was determined as a criterion of lead poisoning to central serotonergic nervous system and Na$\^$+//K$\^$+/-ATPase activity as a criterion of non specific lead poisoning to any kinds of tissues. Selective toxicity of lead poisoning to central serotonergic nervous system was evaluated by the changes of TPH activities without concomitant changes of Na$\^$+//K$\^$+/-ATPase activities. In prenatally lead-exposed rats. this selectivity was found in Telencephalon (2 weeks of age), Diencephalon/Midbrain (2 weeks of age), Midbrain (4 and 6 weeks of age), Pons/Medulla (2, 4 and 6 weeks of age) In rats exposed to low dose of lead and Pons/Medulla (2 weeks of age) to high dose of lead. In postnatal Iy lead-exposed rats, this selectivity was found in Telencephalon (8 weeks of age), Diencephalon(8 weeks of age), Pons/Medulla (6 and 8 weeks of age) in rats exposed to low dose of lead and Pons/Medulla (8 weeks of age) to high dose of lead. These results suggest that lead poisoning may exhibit selective toxicity to central serotonergic nervous system.

  • PDF

Sensory Inputs to Upper Cervical Spinal Neurons Projecting to Midbrain in Cats

  • Kim, Jong-Ho;Jeong, Han-Seong;Park, Jong-Seong;Kim, Jong-Keun;Park, Sah-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.9-19
    • /
    • 1998
  • The present study was primarily carried out to characterize the properties of the spinomesencephalic tract (SMT) neurons that project from the upper cervical spinal segments to the midbrain. It was also investigated whether these neurons received convergent afferent inputs from other sources in addition to cervical inputs. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of midbrain. Recording sites were located in lamina $I{\sim}VIII\;of\;C1{\sim}C3$ segments of spinal cord. Receptive field (RF) and response properties to mechanical stimulation were studied in 71 SMT neurons. Response profiles were classified into six groups: complex (Comp, n=9), wide dynamic range (WDR, n=16), low threshold (LT, n=5), high threshold (HT, n=6), deep/tap (Deep, n=10), and non- responsive (NR, n=25). Distributions of stimulation and recording sites were not significantly different between SMT groups classified upon their locations and/or response profiles. Mean conduction velocity of SMT neurons was $16.7{\pm}1.28\;m/sec$. Conduction velocities of SMTs recorded in superficial dorsal horn (SDH, n=15) were significantly slower than those of SMTs recorded in deep dorsal horn (DDH, n=18), lateral reticulated area (LRA, n=21), and intermediate zone and ventral horn (IZ/VH, n=15). Somatic RFs for SMTs in LRA and IZ/VH were significantly larger than those in SDH and DDH. Five SMT units (4 Comps and 1 HT) had inhibitory somatic RFs. About half (25/46) of SMT units have their RFs over trigeminal dermatome. Excitabilities of 5/12 cells and 9/13 cells were modulated by stimulation of ipsilateral phrenic nerve and vagus nerve, respectively. These results suggest that upper cervical SMT neurons are heterogenous in their function by showing a wide range of variety in location within the spinal gray matter, in response profile, and in convergent afferent input.

  • PDF

집쥐와 닭 뇌의 γ-Aminobutyric acid 함량 (γ-aminobutyric Acid Content in House Rat and Fowl Brain)

  • 허린수
    • 대한수의학회지
    • /
    • 제11권1호
    • /
    • pp.59-63
    • /
    • 1971
  • Current interest in ${\gamma}$-aminobutyric acid (GABA) has arisen from the convergence of several independent line of investigation leading to the demonstration that this and related substances are normal products of brain metabolism and that GABA has an important physiological action upon brain function as well as upon certain peripheral nervous structures. The interest for neurophysiologists has been enhanced by the importance of the discovery for the role of humoral mediator of synaptic transmission or regulator of neuronal activity in the central nervous system, particularly if it may shed some elight upon the nature of central inhibitory processes. In accordance with such an interest and importance, this work was performed in order to standardize the normal content as a preliminary investigation of so-called night active and daytime active animals GABA content in their brains when they are exposed to light and darkness. The method, through which the estimation has made in this work, was paper chromatographic method developed by Maynert and Klingman for the estimation of GABA content in animal tissues. The results obtained are summerized as follows: 1) GABA content in the cerebral cortex of house rat ranged from 90 to $310{\mu}g/gm$ of wet weight. 2) The content of GAGA ranging from 130 to $510{\mu}g/gm$ of wet weight was occurred from midbrain of the rat. 3) GABA content was ranged from 30 to $150 {\mu}g/gm$ of wet weight of the rat cerebellum. 4) The contents of fowl cerebral cortex, midbrain, and cerebellum are estimated as ranging 230-590, 250-620, $50-280{\mu}g/gm$ of wet weight, respectively. As a result, it may be concluded that among three brain tissues of both animals the midbrain is the highest region in GABA content. Fowl brain, on the other side, contains more higher GABA content than the house rat brain does.

  • PDF