• 제목/요약/키워드: Mid-story seismic isolated high-rise building

검색결과 3건 처리시간 0.015초

Structural Design of Mid-Story Isolated High-Rise Building - Roppongi Grand Tower

  • Nakamizo, Daiki;Koitabashi, Yuichi
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.233-242
    • /
    • 2018
  • Since the response reduction effect on over 200-meter-tall resulting from the seismic isolation system is smaller in general than low-rise and mid-rise buildings, mid-story isolated buildings are considered to reduce the response in the upper part above the isolation story, however, in many cases, the acceleration response just below the isolation story is likely to be the largest. This paper presents the structural design schemes, the design of the main structural frames, and the constructions of a 230-meter-tall super high-rise building with mid-story isolation mechanism integrated in Roppongi, Tokyo. Moreover, this paper shows how the architectural and structural design for integrating a mid-story isolation system in a super high-rise building has been conducted and what solutions have been derived in this project. The realization of this building indicates new possibilities for mid-story isolation design for super high-rise buildings.

Structural Design and Performance Evaluation of a Mid-story Seismic Isolated High-Rise Building

  • Tamari, Masatoshi;Yoshihara, Tadashi;Miyashita, Masato;Ariyama, Nobuyuki;Nonoyama, Masataka
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.227-235
    • /
    • 2017
  • This paper describes some of the challenges for structural design of a mid-story seismic isolated high-rise building, which is located near Tokyo station, completed in 2015. The building is a mixed-use complex and encompasses three volumes: one substructure including basement and lower floors, and a pair of seismic isolated superstructures on the substructure. One is a 136.5m high Main Tower (office use), and the other is a 98.5 m high South Tower (hotel use). The seismic isolation systems are arranged in the $3^{rd}$ floor of the Main Tower and $5^{th}$ floor of the South Tower, so that we call this isolation system as the mid-story seismic isolation. The primary goal of the structural design of this building was to secure high seismic safety against the largest earthquake expected in Tokyo. We adopted optimal seismic isolation equipment simulated by dynamic analysis to minimize building damage. On the other hand, wind-induced vibration of a seismic isolated high-rise building tends to be excited. To reduce the vibration, the following strategies were adopted respectively. In the Main Tower with a large wind receiving area, we adopted a mechanism that locks oil dampers at the isolation level during strong wind. In the South Tower, two tuned mass dampers (TMDs) are installed at the top of the building to control the vibration. In addition, our paper will also report the building performance evaluated for wind and seismic observation after completion of the building. In 2016, an earthquake of seismic intensity 3 (JMA scale) occurred twice in Tokyo. The acceleration reduction rate of the seismic isolation level due to these earthquakes was approximately 30 to 60%. These are also verified by dynamic analysis using observed acceleration data. Also, in April 2016, a strong wind exceeding the speed of 25m/s occurred in Tokyo. On the basis of the record at the strong wind, we confirmed that the locking mechanism of oil damper worked as designed.

최상층면진시스템을 활용한 고층건물의 진동제어 (Vibration Control of High-rise Building Structures using Top-story Isolation Systems)

  • 김태호;김현수
    • 한국공간구조학회논문집
    • /
    • 제8권5호
    • /
    • pp.75-82
    • /
    • 2008
  • 본 연구에서는 최상층면진시스템을 적용한 고층건물의 진동제어 가능성을 검토하여 보았다. 이를 위하여 20층 및 50층 건물을 예제구조물로 선택하였고 El Centro 남북방향 성분을 지진하중으로 사용하여 수치해석을 수행하였다. 그리고 인공풍하중을 사용하여 풍하중에 대한 예제구조물의 사용성을 검토하였다. 면진되는 상부층의 수를 변화시켜가면서 구조물의 응답을 평가함으로써 최적의 면진질량에 대해서 검토하였다. 또한 상부층면진시스템의 고유진동주기 변화에 따른 진동제어성능의 변화를 고정기초구조물과 비교하여 검토하였다. 해석결과 최상층면진시스템은 동조질량감쇠기로서 활용될 수 있으며 풍하중 및 지진하중에 대한 고층건물의 동적응답을 효과적으로 저감시킬 수 있었다.

  • PDF