• Title/Summary/Keyword: Mid-Span Spectral Inversion(MSSI)

Search Result 42, Processing Time 0.019 seconds

Compensation of Chromatic Dispersion and Self Phase Modulation in Long-haul Optical Transmission System using Mid-span Optical Phase Conjugator (Mid-span Optical Phase Conjugator를 이용한 장거리 광 전송 시스템에서의 색 분산과 자기 위상 변조의 보상에 관한 연구)

  • 이성렬;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.576-585
    • /
    • 2001
  • In this paper, we investigated the method of compensation for optical pulse shape distortion due to both chromatic dispersion and SPM(self phase modulation) in a single mode fiber We selected MSSI(mid-span spectral inversion) as compensation method using OPC(optical phase conjugator). We used EOP(eye-opening penalty) parameter in order to evaluate the efficiency of waveform distortion compensation. In this paper, we induced optimum pump power level in optical phase conjugator through analytic method of computer simulation. And we investigated input signal power range being able to maintain stable reception performance under the condition of optimum pump power. We verified the possibility of high performance optical transmission system realization through the inducement and application of optimum pump power, input signal power and in-line amplifier spacing, because power control is important in the compensation for optical pulse distortion.

  • PDF

Calculation of Pump Light Power in Wideband Optical Phase Conjugator with Highly-Nonlinear Dispersion Shifted fiber (HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력 계산)

  • 이성렬;이하철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.473-483
    • /
    • 2004
  • In this paper, we numerically investigated the optimum pump light power best compensating for pulse distortion due to both chromatic dispersion and self phase modulation (SPM) as a function of channel input power in 8 channel ${\times}$ 40 Gbps wavelength division multiplexing (WDM systems. Also we investigated the allowable maximum channel input power dependence on modulation format and fiber dispersion coefficient in the various pump light power of OPC. The considered WDM transmission system is based on path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) compensation method, which has highly-nonlinear dispersion shifted fiber (HNL-SDF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that optimal pump light power of HNL-DSF OPC depend on modulation format, initial channel input power, total transmission length and fiber dispersion. But optimal pump light power of HNL-DSF OPC must be selected to make power conversion ratio to almost unity. And we confirmed that, if we allow a 1 dB eye opening penalty (EOP), the tolerable maximum channel input power is increased by using RZ than NRZ as modulation format when pump light power of HNL-DSF OPC is not optimal value but another values.

The Flexible Design of 0.96 Tbps WDM System over 1,000km NZ-DSF by Using Optimal Parameters of Optical Phase Conjugator (광 위상 공액기의 최적 파라미터를 이용한 1,000km NZ-DSF를 갖는 0.96 Tbps WDM 시스템의 유연한 설계)

  • Lee, Seong-Real;Doh, Kyu-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.657-665
    • /
    • 2007
  • In this paper, it is investigated that the limitation due to the asymmetry of optical power and chromatic dispersion with respect to optical phase conjugator (OPC) for compensating optical signal distortion of WDM channels in mid-span spectral inversion (MSSI) technique is overcame by using OPC position offset and optimal dispersion coefficients of fiber sections, which depend on OPC position offset. It is confirmed that overall WDM channels are efficiently compensated by applying the optimal parameter values obtained from the proposed method into 24 channels ${\times}\;40\;Gbps$ WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1,000 km, such as power penalties of inter-channel are reduce to almost 3.5 dB from the infinite value. It is also confirmed that the flexible design of WDM system with OPC is possible by using the optimal parameters, in which OPC is placed at ${\pm}15\;km$ from 500 km for efficiently compensating overall channels.

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1854-1862
    • /
    • 2006
  • The numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are prosed, which are able to effectively compensate overall channels in $8{\times}40Gbps$Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI. Thus, the methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which generates a serious problem if it was not made but it is the condition in the case of applying the OPC into multi-channels WDM system.

Improvement of Bit Error Rate using the Optimal Parameters of Optical Phase Conjugator in WDM System with Non Zero - Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 WDM 시스템에서 광 위상 공액기의 최적 파라미터를 이용한 비트 에러율 개선)

  • Kim Eun-Mi;Lee Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.361-364
    • /
    • 2006
  • The numerical methods of finding the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8\times40$ Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the applying two induced optimal parameters into WDM system contribute to reduce power penalty to 4 times than that of WDM system with the conventional MSSI.

  • PDF

Characteristics of Bit Error Rate dependence on the Position of Optical Phase Conjugator in 320 Gbps WDM System (320 Gbps WDM 전송 시스템에서 광 위상 공액기의 위치에 따른 비트 에러율 특성)

  • Lee Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, optimal position of optical phase conjugator (OPC) for best compensating distorted WDM channels due to both chromatic dispersion and self phase modulation (SPM) in $8{\times}40$ Gbps WDM systems is numerically investigated, and the eye opening penalty (EOP) and bit error rate (BER) characteristics of overall WDM channels at this position is investigated, comparing with that in case of OPC placed at mid-way of total transmission length. It is confirmed that the compensation extents in WDM system with OPC is more improved by the shifting OPC position from the mid-way of total transmission length, depending on the modulation format and fiber dispersion coefficient. Ant it is confirmed that, from a viewpoint of the reception performance, EOP of each channel is more or less different with one another, but the BER characteristics of overall channels are almost equal.

Compensation Characteristics Dependence on the Position of Optical Phase Conjugator in 320 Gbps WDM System

  • Lee Seong-Real;Yim Hwang-Bin
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.162-167
    • /
    • 2004
  • In this paper, optimal position of optical phase conjugator(OPC) for best compensating distorted WDM channels due to both chromatic dispersion and self phase modulation(SPM) is numerically investigated, and the compensation characteristics of overall WDM channels at this position is investigated, comparing with that in case of OPC placed at mid-way of total transmission length. It is confirmed that the compensation extents in WDM system with OPC is more improved by the shifting OPC position from the mid-way of total transmission length. And, we confirmed that the optimal position of OPC must be selected to the position decreasing not only eye opening penalty(EOP) of overall WDM channels but also EOP deviation between WDM channels, and this OPC position should be altered as various system parameters such as modulation format, and fiber dispersion, etc. Using proposed configuration, it is possible to remove all in-line dispersion compensator, reducing span losses and system costs.

Improvement of Bit Error Rate of 16×40 Gbps NRZ-formated WDM Signals over 1,000km NZ-DSF using MSSI with Optimal Parameters (1,000km의 비 영 분산 천이 광섬유로 구성된 WDM 시스템에서 최적 파라미터를 갖는 MSSI를 이용한 NRZ 형식의 16×40 Gbps WDM 신호의 비트 에러율 개선)

  • Lee, Young Kyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.111-119
    • /
    • 2010
  • In this paper the numerical methods of finding out the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersion are proposed, which are able to effectively compensate overall channels in $16{\times}40$ Gbps WDM system. And the compensation characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that the reception performances are largely improved in the system with the induced optimal parameters than in the system with MSSI through the analyzing the eye opening penalty (EOP) and bit error rate (BER) characteristics. It is also confirmed that two optimal parameters depend on each other, but are less related with the procedural problem about the first optimal value among these parameters.

Improvement of Bit Error Rate through the Optimization of 320 Gbps WDM System with Non Zero-Dispersion Shifted Fiber (비영 분산 천이 광섬유를 갖는 320 Gbps WDM 시스템에서 최적화를 통한 비트 에러율 개선)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.103-113
    • /
    • 2006
  • The numerical methods of finding the optimal position of optical phase conjugator (OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero-dispersion shifted fiber (NZ-DSF) as an optical fiber. And BER characteristics in the system with two induced optimal parameters are compared with those in the system with the currently used mid-span spectral inversion (MSSI) in order to confirm the availability of the proposed methods. It is confirmed that two optimal parameters depend on each other, but less related with the searching procedure. The methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which is a serious problem but the condition in the case of applying the OPC into multi-channels WDM system.

  • PDF

Pump Light Porer of Wideband Optical Phase Conjugator Dependence on Amplifier Spacing in 320 Gbps WDM Systems with MSSI

  • Lee Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.735-744
    • /
    • 2006
  • In this paper, the optimum pump light powers of optical phase conjugator(OPC) are numerically investigated as a function of amplifier spacing in 1,200 km $8{\times}40$ Gbps WDM systems with 0.1, 0.4, 0.8, or 1.6 ps/nm/km dispersion coefficient. It is confirmed that the variation of optimal pump light power dependence on amplifier spacing for NRZ transmission system is smaller than that for RZ transmission system through the evaluations and analysis of eye opening penalty(EOP) characteristics. And, in both cases of NRZ and RZ transmission, the variation of optimal pump light power is more increased as amplifier spacing becomes longer. Additionally, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is 50 km.