• Title/Summary/Keyword: Microwave plasma enhanced vapor deposition

검색결과 67건 처리시간 0.031초

마이크로웨이브 화학 기상 증착법을 이용한 다이아몬드 박막의 증착 (Deposition of diamond thin film by MPECVD method)

  • Sung Hoon Kim;Young Soo Park;Jo-Won Lee
    • 한국결정성장학회지
    • /
    • 제4권1호
    • /
    • pp.92-99
    • /
    • 1994
  • 마이크로웨이브 화학 기상 중착법을 이용하여 n 형 Si(100) 기팡위에 다이아몬드 박막을 증착하였다. 다이아몬드의 핵생성 밀도를 향상시키기 위하여 Si 기판을 다이아몬드 분말로 전처리 하거나 negative bias를 인가하여 다이아몬드 박막을 증착하였다. 전처리한 기판에서는 다이아몬드의 순수도가 전체압력이 증가함에 따라 (20~150 Torr)향상되었으며 bias 인가시에는$CH_4$ 농도와 전체압력에 따라 다이아몬드의 생성유무가 결정되었다.플라즈마의 이온에 의해 가판위에 생성되는 전류를 $CH_4$ 농도, bias 전압, 그리고 전체압력에 따라 측정하였으며 그 결과를 다이아몬드 박막의 생성 조건과 관련시켜 검토 하였다.

  • PDF

탄소 나노튜브의 성장 및 후처리 조건에 따른 이산화질소 감지특성의 변화 (The Change of $NO_{2}$ Sensing Characteristics for Carbon Nanotubes with Growth and Post Treatment Conditions)

  • 이임력
    • 마이크로전자및패키징학회지
    • /
    • 제13권4호
    • /
    • pp.65-70
    • /
    • 2006
  • CVD 및 PECVD법으로 탄소 나노튜브를 성장하고, 그 후 $400{\sim}500^{\circ}C$에서 산화 열처리한 센서의 이산화질소 감지특성을 $200^{\circ}C$ 및 1.5ppm의 이산화질소 농도 하에서 측정하였다. 탄소 나노튜브 센서의 전기저항은 온도 증가에 따라 감소하는 반도체 특성을 보였으며, 이산화질소 흡착에 따라 전기저항은 감소하였다. 공기 중의 수분은 센서감도에 영향을 주고 있으며, 센서를 마이크로파에 3분간 노출하면 센서의 특성은 저하되었다. 또한 CVD법으로 제조한 시편에 비하여 PECVD법으로 성장한 탄소 나노튜브 센서의 감도는 향상 되었다.

  • PDF

반응가스 비율에 따른 탄소나노월의 성장특성 (Growth Properties of Carbon nanowall according to the Reaction Gas Ratio)

  • 김성윤;강현일;최원석;정연호;임윤식;유영식;황현석;송우창
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.351-355
    • /
    • 2014
  • Graphite electrodes are used for secondary batteries, fuel cells, and super capacitors. Research is underway to increased the reaction area of graphite electrodes used carbon nanotube (CNT) and porous carbon. CNT is limited to device utilization in order to used a metal catalyst by lack of surface area to improve. In contrast carbon nanowall (CNW) is chemically very stable. So this paper, microwave plasma enhanced chemical vapor deposition (PECVD) system was used to grow carbon nanowall (CNW) on Si substrate with methane ($CH_4$) and hydrogen ($H_2$) gases. To find the growth properties of CNW according to the reaction gas ratio, we have changed the methane to hydrogen gas ratios (4:1, 2:1, 1:2, and 1:4). The vertical and surficial conditions of the grown CNW according to the gas ratios were characterized by a field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy measurements showed structure variations.

가스 유량제어에 의한 나노다이아몬드 박막의 특성연구 (A Study on the Characteristics of Nanodiamond Films with the Gas Flow Control)

  • 김태규;김창훈
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.153-159
    • /
    • 2006
  • Nanodiamond films were deposited on Si substrate by introducing a time dependent on/off modulation of $CH_4\;and\;O_2$ flows in a vertical-type microwave plasma enhanced chemical vapor deposition system. Surface morphology and diamond quality of the film were investigated as a function of the on/off modulation time interval. The diamond nucleation density on the substrate was enhanced under low temperature and low pressure condition. In addition, the diamond nucleation density was enhanced by increasing the on/off modulation time interval. Enhanced diamond quality was noticeable under the condition of a longer on/off modulation time interval. It was suggested that the nanodiamond nuclei formed the cluster formation.

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.

방사선 검출기용 다이아몬드 막의 합성 (Synthesis of Diamond films for Radiation Detector)

  • 박상현;김정달;박재윤;김경환;구효근;이덕출
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.366-369
    • /
    • 1999
  • Synthetic diamond films have been deposited on the silicon(100) surface and molybdenum substrates using an microwave plasma enhanced vapor deposition (MWPECVD) method. The effect of deposition time, surface morphology, X-ray diffraction pattrm, infrared transmittance and Raman Scattering have been studied, The diamond film deposited on Mo substrate for (100) hours at 40 torr H$_2$-CH$_4$O$_2$ gas system have been shown 1${\mu}{\textrm}{m}$/h of growth rate and good crystallization

  • PDF

$CH_4/O_2$의 사이클릭 유량제어에 의한 다이아몬드 박막의 특성향상 (Cyclic on/off Modulation of $CH_4\;and/or\;O_2$ Flows for the Enhancement of the Diamond Film Characteristics)

  • 김태규;김성훈;윤수종
    • 한국표면공학회지
    • /
    • 제39권2호
    • /
    • pp.82-86
    • /
    • 2006
  • Diamond films were deposited on 10.0$\times$10.0$mm^2$ pretreated (100) Si substrate using $CH_4$, $H_2$ and $O_2$ source gases in a horizontal-type microwave plasma enhanced chemical vapor deposition system. We introduced a cyclic on/off modulation of $CH_4$ and/or $O_2$ flows is a function of the reaction time during the initial deposition stage. Surface morphology and diamond quality of the films were investigated as a function of the different cyclic modulation process of the source gases flows: For the enhancement of the nucleation density, there is an optimal process for the incorporation of oxygen. Diamond qualities of the films were improved by introducing oxygen gas during the initial deposition stage.

Selective Growth of the Carbon Nanofibers at the Groove Area of the MgO Substrate by the Iridium Catalyst

  • Kim, Sung-Hoon
    • 한국세라믹학회지
    • /
    • 제41권12호
    • /
    • pp.880-883
    • /
    • 2004
  • Carbon nanofibers could be selectively formed at the groove area of the MgO substrate using microwave plasma-enhanced chemical vapor deposition system. Iridium metal was used as a catalyst layer for the formation of the carbon nanofibers. The growth direction of the carbon nanofibers was vertical to the substrate surface. The selectively grown iridium-catalyzed carbon nanofibers show around $1.8V/{\mu}m$ turn-on voltage and $1.0\;mA/cm^2$ field emission current density at $2.65\;V/{\mu}m$ in the field emission measurement.

Patterning of CVD Diamond Films For MEMS Application

  • Wang, Xiaodong;Yang, Yirong;Ren, Congxin;Mao, Minyao;Wang, Weiyuan
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.167-170
    • /
    • 1998
  • To apply diamond films in microelectromechanical systems(MEMS), it is necessary to develop the patterning technologies of diamond films in the micrometer scale. In this paper, three different kinds of technologies for patterning CVD diamond films carried out by us were demonstrated: selective growth by improved diamond nucleation in DC bias-enhanced microwave plasma chemical vapor deposition (MPCVD) system, selective growth of seeding using diamond-particle-mixed photoresist, and selective etching of oxygen ion beam using Al as the mask. It was show that high selectivity and precise patterns had been achieved, and all the processes were compatible with IC process.

  • PDF