• Title/Summary/Keyword: Microwave Remote Sensing

Search Result 179, Processing Time 0.025 seconds

Microwave Remote Sensing System Development in MACRES

  • Mahmood, K.A.;Ali, A.;Yusof, S.;Ahmad, Z.;Jamil, H.;Ibrahim, N.;Aziz, H.;Abu Bakar, S.B.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1012-1014
    • /
    • 2003
  • Since it's establishment Malaysian Center for Remote Sensing (MACRES) has focused on the measurements from airborne and space borne remote sensors. In the year 1999 MACRES in collaboration with Multimedia University Malaysia (MMU) began developing it's own remote sensing sensors to meet Malaysian Remote Sensing needs. MACRES adopted a very systematic approached to the development of these microwave sensors. Starting from non-imaging ground base microwave remote sensing sensors MACRES is now well into developing it's first Airborne Synthetic Aperture Radar. With the capability of developing it's own sensors MACRES will profit more on the microwave remote sensing application research. This paper will demonstrate MACRES capability in developing Microwave Remote Sensing Sensors to meet Malaysian remote sensing society needs.

  • PDF

Study on Imaging with Scanning Airborne W-band Millimeter Wave Radiometer

  • Kong, De-Cai;Kim, Yong-Hoon;Li, Jing;Zhang, Sheng-Wei;Sun, Mao-Hua;Liu, He-Guang;Jiang, Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.593-597
    • /
    • 2002
  • The paper introduces a research on the W-band Millimeter Wave Radiometer(RADW92) through an airborne experiment. Microwave remote sensing images of part of the Yellow River and the WeiHe River are of fared. Analysis of factors influencing the image qualities as well as the resolutions to them are also included. The RADW92 is the first generation of Millimeter Wave Radiometer in China, which works with operating frequency 92 GHz, the bandwidth 2 GHz, the integration time 60ms, the system sensitivity 0.6k and the linearity better than 0.999. Cassegrain Antenna is designed for imaging by conically scanning. The result of the experiment suggested that RADW92 had been adequate for space use.

  • PDF

THE PERFOMANCE OF GROUNDBASE MOBILE PLATFORM FOR C-BAND MICROWAVE SCATTEROMETER SYSTEM

  • Aziz H.;Mahmood N.N.;Ali A.;Jamil H.;Mahmood K.A.;Ahmad Z.;Ibrahim N.;Brevern P.V.;Chuah H.T.;Koo V.C.;Sing L.X.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.61-63
    • /
    • 2004
  • The procurement of a mobile microwave scatterometer platform involved the consideration to ensure a mobile platform and equipment selected full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involved engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected mobile platform available locally. The mobile platform is a delivery system for microwave remote sensing microwave scatterometer and other accessories to any locations in Malaysia. Total loading to be carried by the mobile platform is 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system including the antenna to a maximum height of 27 m, and can also be rotated through $3600^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards predetermined target.

  • PDF

A BANDWIDTH VARIABLE DIGITAL GENERATOR FOR RADAR ALTIMETER

  • Lin, Ying;Liu, Heguang;Liu, Zhiqlang;Xu, Ke;Zhang, Xuabgjyb
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.484-489
    • /
    • 2002
  • This paper concerns the design and implementation of a Bandwidth Variable Digital Chirp Generator (DCG) for the radar altimeter. A double SRAM parallel structure is used to breakthrough the upper DCG bandwidth limited by the highest clock frequency of the digital chips. An experimental system working in the waveform storage method has been implemented. We show that the bandwidth changed according to the radar altimeter's requirement and the design released the stringent speed requirement of the chips fur making a variable wide bandwidth DCG.

  • PDF

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

Research on Digital Complex-Correlator of Synthetic Aperture Radiometer: theory and simulation result

  • Jingye, Yan;Ji, Wu;Yunhua, Zhang;Jiang, Changhong;Tao, Wang;Jianhua, Ren;Jingshan, Jiang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.587-592
    • /
    • 2002
  • A new digital correlator fur an airborne synthetic aperture radiometer was designed in order to replace the conventional analog correlator unit which will become very complicated while the number of channels is increasing. The digital correlator uses digital IQ demodulator instead of the intermediate frequency (IF) phase shifter to make the correlation processing performed digitally at base band instead of analogly at IF. This technique has been applied to the digital receiver in softradio. The down-converted IF signals from each pair of receiver channels become low rate base-band digital signals after under-sampled, Digitally Down-Converted (DDC), decimated and filtered by FIR filters. The digital signals are further processed by two digital multipliers (complex correlation), the products are integrated by the integrators and finally the outputs from the integrators compose of the real part and the imaginary part of a sample of the visibility function. This design is tested by comparing the results from digital correlators and that from analog correlators. They are agreed with each other very well. Due to the fact that the digital correlators are realized with the help of Analog-Digital Converter (ADC) chips and the FPGA technology, the realized volume, mass, power consumption and complexity turned out to be greatly reduced compared with that of the analog correlators. Simulations show that the resolution of ADC has an influence on the synthesized antenna patterns, but this can be neglected if more than 2bit is used.

  • PDF

SAR Remote Sensing Technology Development and Application in China

  • Jing, Li
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.448-453
    • /
    • 2002
  • Remote sensing technology is one of the most powerful tools for human to know the nature and their living environment. However, before microwave remote sensing was developed and applied, remote sensing application was limited strongly by weather and time. Microwave remote sensing technology solves the problem. It makes us to have the capability to acquire information at all time of the day and under all weather condition, and make remote sensing technology be used in more wider area. Microwave remote sensing system include mainly Synthetic Aperture Radar (SAR), Microwave Radiometer, Microwave Scatterometer, and Altimeter (ALT). As SAR can acquire image whose spatial resolution is similar with visible and infrared image, it is paying much attention to and playing a more and more important role in earth observation. In recent year, the development of new SAR technology (multi-band and multi-polarization technology, InSAR technology, D-InSAR technology, and so on) makes SAR remote sensing go to an new stage, and its application area become more and more widely. The first Synthetic Aperture Radar (SAR) in the world appeared in 1960. After that, SAR and its application all developed very fast. Some radar satellites launched and run (include Seasat-A in 1978, ERS-1 in 1991, JERS-1 in 1992, Radarsat in 1995, and so on) promote SAR research and application in world greatly. China began to develop its SAR sensor and research SAR application in 1970s. After more than 30 years' research, it get some important development in sensor development data processing method, and application. Some operational systems have been used and play an important role. This paper will introduce the development of SAR technology and its application in China.

  • PDF

Impact of a New Formula on the Fresnel Reflectance on Microwave Remote Sensing

  • Qing, Xu;Yuguang, Liu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1340-1342
    • /
    • 2003
  • In microwave remote sensing, the Fresnel reflectance formula is widely used in the sea surface emissivity modeling. As an essential contribution to microwave remote sensing, a new formula on the Fresnel reflectance has been derived based on our understanding of the complex index of refraction and continuity condition of E-M waves at the interface between two mediums. The proposed formula can be used to obtain the emissivity of sea surface, which is useful to retrieve sea surface temperature, sea surface salinity and the brightness temperature. Considering Bragg-resonant scatter, it is useful for the calculation of the normalized radar cross-section, and the retrieval of sea surface wind either.

  • PDF

THE MECHANICAL DESIGN AND CONSTRUCTION OF A TRUCK MOUNTED SCATTEROMETER SYSTEM

  • Aziz, H.;Mahmood, N.N.;Ali, A.;Ibrahim, N.;Ahmad, Z.;Mahmood, K.A.;Jamil, H.;Brevern, P.V.;Koo, V.C.;Sing, L.K.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1009-1011
    • /
    • 2003
  • The procurement of mobile microwave scatterometer involve the consideration to ensure vehicle and equipment selection full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involve engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected vehicle available from the market. The vehicle is also a delivery system for microwave remote sensing equipment and other accessories to any locations in Malaysia. Total loading to be carried by the vehicle is about 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system and antenna to a maximum height of 27 m, and can also be rotated through 360$^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards required target.

  • PDF

Vibration-based structural health monitoring of stay cables by microwave remote sensing

  • Gentile, Carmelo;Cabboi, Alessandro
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • Microwave remote sensing is probably the most recent experimental technique suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are presented and discussed. Subsequently, the paper addresses the application of the radar technology to the measurement of the vibration response on the stay cables of two cable-stayed bridges. The dynamic tests were performed in operational conditions (i.e. with the excitation being mainly provided by micro-tremors, wind and traffic) and the maximum deflections of the cables were generally lower than 5.0 mm. The investigation clearly highlights: (a) the safe and simple use of the radar on site and its effectiveness to simultaneously measure the dynamic response of all the stay cables of an array; (b) the negligible effects of the typical issues and uncertainties that might affect the radar measurements; (c) the accuracy of the results provided by the microwave remote sensing in terms of natural frequencies and tension forces of the stay cables; (d) the suitability of microwave interferometry to the repeated application within Structural Health Monitoring programmes.