• Title/Summary/Keyword: Microwave Relay System

Search Result 12, Processing Time 0.014 seconds

Integration of Wireless Body Area Networks (WBANs) and WAN, WiMAX and LTE

  • Hu, Long;Dung, Ong Mau;Liu, Qiang;Han, Tao;Sun, Yantao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.980-997
    • /
    • 2013
  • Nowadays, wireless communication has a great advantage in technology. We use wireless devices almost in all expected life such as: entertainment, working and recently in the healthcare area, where Wireless Body Area Networks (WBANs) become a hot topic for researchers and system designers. Recent work on WBANs focus on related issues to communication protocol, especially ZigBee network is fine tuned to meet particular requirements in healthcare area. For example, some papers present real-time patient monitoring via ZigBee communication given the short distance between body sensors and remote devices, while the other work solve the limited coverage problem of Zigbee by designing mechanisms to relay Zigbee data to other types of wire or wireless infrastructure. However, very few of them investigate the scenarios of ZigBee coexisting or integrated with other networks. In this paper, we present the real-time data transmission from ZigBee end devices to Wide Area Network (WAN), Worldwide interoperation for microwave access network (WiMAX) and Long Term Evolution network (LTE). We provide in detail the ZigBee gateway components. Our simulation is conducted by OPNET, we visualize many topology network scenarios in ZigBee hybrid system. The results in simulation show that ZigBee end devices can successfully transmit data in real-time to other network end devices.

Design of SIR-based Bandstop Filter with Symmetrical Hairpin Wideband (SIR 기반 대칭 헤어핀 광대역 대역저지 여파기)

  • Kim, Chang-Soon;Lee, Yong-IL
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.43-46
    • /
    • 2018
  • This paper has designed a wideband bandpass filter (WBSF : Wide Band Stop Filter) using a stepped impedance resonator (SIR : Stepped Impedance Resonator) with improved performance and improved hairpin coupling structure. The SIR WBSF is small in size and has the advantage of having excellent bandstop characteristics. The designed BSF has a structure in which a quadrangular shaped hairpin of a / 4 length is arranged symmetrically on the upper and lower sides of the input and output transmission lines. The input and output terminals were terminated at 50 ohms for system applications. The center frequency of the SIR WBSF is 6.3 GHz, which is the second harmonic of 3.15 GHz. The designed filter has a 3dB bandwidth of 2.9 GHz and a transmission coefficient ($S_{21}$) of 33.2 dB. The reflection coefficient ($S_{11}$) at the center frequency is 0.106 dB. The application field is used for fixed microwave relay stations, fixed satellite and earth stations, and fixed satellite communications. The overall size is $20mm{\times}10mm$.