• Title/Summary/Keyword: Microwave Plasma

Search Result 398, Processing Time 0.029 seconds

A Study on Plasma Display Panel Barrier Rib Fabrication by Silicone Rubber Tooling and electromagnetic Wave (실리콘고무형과 전자기파에 의한 PDP격벽의 성형에 관한 연구)

  • 정해도;손재혁;조인호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.20-23
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. The mold for forming the barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing processes such as screen printing, sand-blasting and photosensitive glass methods. The mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$, depth 124$\mu\textrm{m}$ , pitch 274$\mu\textrm{m}$ was acquired by machining of single crystal silicon with dicing saw blade. Maximum roughness of the bottom of the grooves was 59.6nm Ra in grooving Si. Barrier ribs were formed with silicone rubber mold, which is transferred from grooved Si forming hard mold. Silicone rubber mold has the elasticity, which enable to accommodate the waveness of lower glass plate of PDP. The methods assisted by the microwave and UV was adopted for reducing the forming time of glass paste.

  • PDF

GROWTH OF CARBON NANOTUBES ON GLASS BY MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION (마이크로웨이브 플라즈마 화학기상증착장비를 사용한 유리기판상의 탄소나노튜브의 합성)

  • Lee, Jae-Hyeoung;Choi, Sung-Hun;Choi, Won-Seok;Hong, Byung-You;Kim, Jeong-Tae;Lim, Dong-Gun;Yang, Kea-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.99-100
    • /
    • 2005
  • We have grown carbon nanotubes (CNTs) with a microwave plasma chemical vapor deposition (MPECVD) method, which has been regard as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the low temperature and the large area growth. We use methane ($CH_4$) and hydrogen ($H_2$) gas for the growth of CNTs. 60 nm thick Ni catalytic layer were deposited on the TiN coated glass substrate by RF magnetron sputtering method. In this work, we report the effects of pressure on the growth of CNTs. We have changed pressure of processing (10 $\sim$ 20 Torr) deposition of CNTs. SEM (Scanning electron microscopy) images show diameter, length and cross section state CNTs.

  • PDF

A Novel Transmission line model of Cutoff Probe for precise measurement of high density plasma

  • Kim, Si-Jun;Lee, Jang-Jae;Kim, Gwang-Gi;Lee, Ba-Da;Yeom, Hui-Jung;Lee, Yeong-Seok;Kim, Dae-Ung;Kim, Jeong-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.185.1-185.1
    • /
    • 2016
  • Cutoff probe, diagnostics instrument for plasma density, have been received an extensive attention due to simple, robust and lowest assumption. Although the cutoff probe has a long history, physical model is limited in low density plasma. For that reason, we propose a novel transmission line model of cutoff probe for precise measurement of high density plasma. In addition simplified circuit model can be obtained from transmission line model. It can explain simply physics of cutoff probe in high density plasma.

  • PDF

Effect of Hydrogen Plasma Treatment on the Photoconductivity of Free-standing Diamond Film (다이아몬드막의 광전도성에 관한 수소 플라즈마 표면 처리의 효과)

  • Sung-Hoon, Kim
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.337-350
    • /
    • 1999
  • Thick diamond film having ~700${\mu}{\textrm}{m}$ thickness was deposited on polycrystalline molybdenum (Mo) substrate using high power (4kW) microwave plasma enhanced chemical vapor deposition (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconductivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

Effect of hydrogen plasma treatment on the photoconductivity of free-standing diamond film

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.441-445
    • /
    • 1999
  • Thick diamond film having $~700\mu\textrm{m}$ thickness was deposited on polycrystalline molybdenum(Mo) substrate using high power (4 kW) microwave plasma-enhanced chemical vapor depostion (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconcuctivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

Construction of an Electron Cyclotron Resonance Plasma Apparatus (ECR 플라즈마 장치의 제작)

  • 오수기;정근모
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.32-36
    • /
    • 1992
  • An ECR plasma apparatus is designed and constructed. The gradient of magnetic field in microwave cavity was adjusted to provide an ECR plasma stream by electro magnetic lenz system. Employing a yoke arround the electro magnets, the magnetic field intensity was increased by 50% with the same electric current. Characteristics of the ECR plasma discharged in the apparatus were investigated by Langmuir probe method. The variations of electron temperature and electron density along chamber axis were analysed.

  • PDF

Time-dependent Characteristics of Pulse Modulated rf Plasma (펄스모듈레이션 된 고주파 플라즈마의 시변특성)

  • Lee Sun-Hong;Park Chung-Hoo;Lee Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.566-571
    • /
    • 2004
  • Pulse modulation technique provide additional controling method for electron temperature and density in rf and microwave processing plasma. Transient characteristics of electron density and temperature have been measured in pulse modulated rf inductively coupled argon plasma using simple probe circuit. Electron temperature relaxation is clearly identified in the after glow stage. Controllability of average electron temperature and density depends on the modulation frequency and duty ratio. Numerical calculation of time-dependent electron density and temperature have been performed based on the global model. It has been shown that simple langmuir probe measurement method used for continuous plasma is also applicable to time-dependent measurement of pulse modulated plasma.