• Title/Summary/Keyword: Microwave Dielectric Materials

Search Result 249, Processing Time 0.045 seconds

The microwave dielectric properties of $Bi_{(1-x)}Tm_xNbO_4$ (마이크로파 유전체 $Bi_{(1-x)}Tm_xNbO_4$의 유전특성)

  • Hwang, Chang-Gyu;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.662-665
    • /
    • 2002
  • The microwave dielectric properties and the microstructures of $Tm_2O_3$-modified $BiNbO_4$ ceramics were investigated. $Bi_{(1-x)}Tm_xNbO_4$ ceramics combined with orthorhombic and triclinic phases were identified at sintering temperatures of $920{\sim}960^{\circ}C$. The apparent density decreased slightly with the increasing Tm content. Regardless of the Tm content the dielectric constant $(\varepsilon_r)$ of all compositions except x=0.1 in $Bi_{(1-x)}Tm_xNbO_4$ ceramics saturated at the range of 42~44. The $Q{\times}f_0$ values of 6,000-12,000(GHz) were obtained for all compositions when the sintering temperatures were in the range of $920{\sim}960^{\circ}C$. The temperature coefficient of the resonant frequency$(\tau_f)$ can be also adjusted with increasing the amount of the doped Tm from a positive value of $+15ppm/^{\circ}C$ to a negative value of $-20ppm/^{\circ}C$. The $Bi_{(1-x)}Tm_xNbO_4$ ceramics can be possibly applied to multilayer microwave devices with low processing temperatures.

  • PDF

Microwave dielectric properties according to the additions of NiO to $(Zr_{0.65}, Sn_{0.35})Ti_{1.04}O_{4.04}$ ceramics ($(Zr_{0.65}, Sn_{0.35})Ti_{1.04}O_{4.04}$세라믹스의 NiO첨가에 따른 고주파 유전 특성)

  • 윤중락;권정열;이헌용;김경용
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.594-600
    • /
    • 1995
  • Dielectric properties at microwave frequencies of ($Zr_{0.65}$, $Sn_{0.35}$) $Ti_{1.04}$ $O_{4.04}$ ceramics with additives, NiO as an agent to improve dielectric properties and $B_{2}$ $O_{3}$ as a firing agent were investigated. When 0.5 - 1.5 wt% of NiO is add, the grain growth is inhibited and the shape of the grain is uniformed, Dielectric constant(Fr) and bulk density are increased with raising amount of NiO at sintering temperature of 1330 - 1360.deg. C, but the temperature coefficient of resonant frquency(.epsilon.$_{r}$) decreased gradually as the NiO content increased. The value of Qx $f_{o}$ was increased as the amount of NiO was increased in the range of 0.5 to 1.0 wt% and the Qx $f_{o}$, was decreased slightly with raising sintering temperature. With NiO of 1.0 wt% and at sintering temperature of 1360.deg. C, this ceramics was found to have excellent microwave properties of .epsilon.$_{r}$=37.8, Qx $f_{o}$ = 48.600 and .tau.$_{f}$ = 7 ppm/.deg. C.C.. C.. C.C.. C.. C.

  • PDF

Non-Resonant Waveguide Technique for Measurement of Microwave Complex Permittivity of Ferroelectrics and Related Materials

  • Jeong, Moongi;Kim, Beomjin;Poplavko, Yuriy;Kazmirenko Victor;Prokopenko Yuriy;Baik, Sunggi
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.449-454
    • /
    • 2005
  • A waveguide method is developed to study the materials with relatively large dielectric constants at microwave range. Basically, the method is similar to the previous waveguide methods represented by short-circuit line and transmission/reflection measurement methods. However, the complex permittivity is not determined by the shift in resonance frequencies, but by numerical analysis of measured scattering parameters. In order to enhance microwave penetration into the specimen with relatively large permittivity, a dielectric plate with lower permittivity is employed for impedance matching. The influences of air gap between the specimen and waveguide wall are evaluated, and the corresponding errors are estimated. The propagation of higher order modes is also considered. Experimental results for several reference ceramics are presented.

Microwave Dielectric Properties of $BaO-TiO_2$ Ceramics ($BaO-TiO_2$계 세라믹스의 마이크로파 유전 특성)

  • Park, In-Gil;Lee, Young-Hie;Kim, Hyun-Jae;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.11-14
    • /
    • 1993
  • $BaO-TiO_2$ ceramics ($BaO:TiO_2$=18.2:81.8[mol.%]) were fabricated by mixed-oxide method. Microwave dielectric properties were investigated with sintering temperature and annealing time. Increasing the sintering temperature, the sintered density was decreased. At the sintering temperature of 1400$[^{\circ}C]$, dielectric constant, quality factor and temperature coefficient of resonant frequency had a good values of 35.03, 5690, -4.433$[ppm/^{\circ}C]$, respectively. Increasing the annealing time, dielectric constant and quality factor were increased and temperature coefficient of resonant frequency was decreased.

  • PDF

A Study on the Li5Fe5O8 Species Affecting the Microwave Heating Performance on the Ternary Li-Fe-Zn Material (3원계 금속산화물로 제조한 마이크로웨이브 발열소재상 Li5Fe5O8 종이 발열성능에 미치는 영향 연구)

  • Jang, Young Hee;Lee, Sang Moon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.703-709
    • /
    • 2018
  • Dielectric heating materials were prepared through the thermal treatment for composites of Li and Zn type precursors that are major materials being responded to microwave under diversified conditions. The prepared heating material samples were analyzed by SEM and it was confirmed that $Li_5Fe_5O_8$ materials being formed on the surface was a major influencing factor for the heating performance. Heating materials improved the moisture removal in a sludge drying facility, for example, the moisture content of 25 v/v% sludge decreased to 15.22 v/v%. Accordingly, heating materials were confirmed to directly affect the performance and efficiency of the microwave drying process.

Effects of Fluoride Additions on Sintering and Microwave Dielectric Properties of CaWO$_4$ (Fluoride 첨가에 따른 CaWO$_4$의 소결 및 고주파 유전특성)

  • 이경호;김용철;방재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.127-130
    • /
    • 2002
  • In this study, development of a new LTCC material using a non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. For LTCC application, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, CaWO$_4$ was tamed out the suitable LTCC material. CaWO$_4$ can be sintered up to 98% of full density at 1200$^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 10.15, 62880GHz, and -27.8ppm/$^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, 0.5∼1.5 wt% LiF were added to CaWO$_4$. LiF addition reduced the sintering temperature/time down to 800$^{\circ}C$/10∼30min due to the reactive liquid phase sintering. Dielectric constant lowered from 10.15 to 9.38 and Q x fo increased up to 92000GHz with increasing LiF content.

  • PDF

The Influence of $Ta_2O_{5}$ Addition on Dielectric Characteristics of Zirconium Titanate Ceramics (Zirconium Titanate 세라믹 유전체에서 $Ta_2O_{5}$ 첨가가 유전특성에 미치는 영향)

  • 이석진;이창화;이상석;최태구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.129-132
    • /
    • 1992
  • Rutile was among the first dielectric materials used. However, rutile exhibits a very high temperature coefficient of capacitance (about -750[ppm/$^{\circ}C$]) which resticts its practical application. Since this first use of titania, other materials have also been studied with the object of decreasing the temperature dependence whilst retaining favorable dielectric loss, Q, and relative permittivity. The temperature coefficient of temperature compensation capacitor is +100~750[ppm/$^{\circ}C$], dielectric constant 10~150. Low loss ceramics with dielectric constants in the 10~150 range also found application. Recently, their applications are extended in EMI filter and dielectric materials for microwave. There temperature coefficient of dielectric materials approaches 0[ppm/$^{\circ}C$]. The dielectric preperties of zirconia titanate ceramics prepared by addition of $Ta_2O_{5}$ were investigated.

  • PDF

Millimeter-wave Dielectric Ceramics of Alumina and Forsterite with High Quality factor and Low Dielectric Constant

  • Ohasto, Hitoshi;Tsunooka, Tsutomu;Ando, Minato;Ohishi, Yoshihiro;Miyauchi, Yasuharu;Kakimoto, Ken ichi
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.350-353
    • /
    • 2003
  • Millimeter-wave dielectric ceramics have been used like applications for ultrahigh speed wireless LAN because it reduces the resources of electromagnetic wave, and Intelligent Transport System (ITS) because of straight propagation wave. For millimeterwave, the dielectric ceramics with high quality factor (Q$.$f), low dielectric constant($\varepsilon$), and nearly zero temperature coefficient of resonant frequency ($\tau$) are needed. No microwave dielectric ceramics with these three properties exist except Ba(Mg$\_$1/3/Ta/sub1/3/)O$_3$ (BMT), which has a little high s: In this paper, alumina (Al$_2$O$_3$) and fosterite (Mg$_2$SiO$_4$), candidates for millimeter-wave applications, were studied with an objective to get high q$.$f and nearly zero $\tau$$\_$f/ For alumina ceramics, q$.$f more than 680,000 GHz was obtained but it was difficult to obtain nearly zero Qf. On the other hand, for forsterite ceramics, q$.$f was achieved from 10,000 GHz of commercial for sterite to 240,000 GHz of highly purified MgO and SiO$_2$ raw materials, and $\tau$$\_$f/ was reduced a few by adding TiO$_2$ with high positive $\tau$$\_$f/.

Effect of Cavity Material on the Q-Factor Measurement of Microwave Dielectric Materials (캐비티 재질이 마이크로파 유전체 공진기의 Q값 측정에 미치는 영향)

  • Park, Jae-Hwan;Park, Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.39-43
    • /
    • 2011
  • Effects of cavity material on the Q-factor measurement of microwave dielectric materials were studied by HFSS simulation and the measurements using metal cavity. $TE_{01\delta}$ mode resonant frequency was determined from the electric and magnetic field patterns and the loaded Q-factor was calculated from 3dB bandwidth of $S_{21}$ spectrum. When the cavity metal materials were Cu, SUS and Au cavity, the level of Q-factor was similar. However, Q-factor was significantly decreased when the cavity metal material was CuO. The Q-factor measurements of dielectric resonator by network analyzer using various metal cavity exhibits consistent behavior.