• Title/Summary/Keyword: Microstructure properties

Search Result 4,066, Processing Time 0.031 seconds

Corrosion of castable refractory in H2O/N2/H2S mixed gas at 900℃ (H2O/N2/H2S 혼합가스 분위기 900℃에서 캐스타블 내화물의 부식)

  • Shin, Min;Yoon, Jong-Won;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2017
  • Refractories used in low-rank coal gasification reactors are usually exposed in a highly corrosive $H_2S$ gas at less than $1000^{\circ}C$, and their mechanical properties such as erosion resistance and fracture strength decline with the exposure time. However, the cause of the degradation of the mechanical properties has little reported yet. In this paper, two kinds of castable refractories with different refractoriness had been exposed in a $H_2O/N_2/H_2S$ mixed gas with high $H_2S$ content for 100 hours at $900^{\circ}C$, and the changes of microstructure, crystalline phases and erosion resistance were compared before and after the corrosion test. The weight of the refractories decreases due to the elution of silica in the specimens after the corrosion test. The capillary porosities of the samples are reduced, but the erosion resistance of the samples is fatally weakened after the corrosion test. There also are changes in constituent phases; dmitryivanovite ($CaAl_2O_4$) and amorphous silica ($SiO_2$) disappear, and gypsum ($CaSO_4{\cdot}2H_2OS$) and kaolinite ($Al_2Si_2O_5(OH)_4$) newly appear after the corrosion test. It is obvious that the phase change from dmitryivanovite that works as a binding agent in the castable refractory to gypsum is the main reason of the degradation of the erosion resistance, because the mechanical properties of gypsum are much poorer than those of dmitryivanovite.

Preparation and Properties of Silicon Nitride Ceramics by Nitrided Pressureless Sintering (NPS) Process (Nitrided Pressureless Sintering 공정을 이용한 질화규소 세라믹스의 제조 및 특성)

  • Cheon, Sung-Ho;Han, In-Sub;Chung, Yong-Hee;Seo, Doo-Won;Lee, Shi-Woo;Hong, Kee-Soeg;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.893-899
    • /
    • 2004
  • The mechanical properties and microstructure and thermal properties of Nitrided Pressureless Sintering(NPS) silicon nitride ceramics, containing three type of $Al_{2}O_3,\;Y_{2}O_3$ sintering additives, were investigated. Also, we have investigated the effect of silicon metal content changing with 0, 5, 10, 15, and $20wt\%$ Si in each composition. In $5wt\%\;Al_{2}O_3,\;5wt\%\;Y_{2}O_3,\;and\;5wt\%$ Si composition, silicon nitride sintered body was successfully densified to a high density. The average 4-point flexural strength and relative density of these specimens were 500 MPa and 98% respectively. Also, Thermal expansion coefficient and thermal conductivity of specimens at room temperature were $2.89{\times}10^{-6}/^{\circ}C\;and\;28W/m^{\circ}C$, respectively. The flexural strength of sintered specimens after thermal shock test of 20,000 cycles was maintained as-received value of 500 MPa.

Effects of Brazing Processing Condition on Mechanical Properties and Reliability of Si3N/S.S. 316 Joints (브레이징 접합공정 조건이 SiN4/S.S. 316 접합체의 기계적 특성 및 신뢰도에 미치는 영향)

  • Chang, Hwi-Souck;Park, Sang-Whan;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.955-962
    • /
    • 2002
  • The microstructure change of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer were examined to clarify the effects of brazing process conditions such as brazing time and temperature on the mechanical properties and reliability of brazed joints. For the brazed joint above 900${\circ}C$, the Cu buffer layer was completely dissolved into brazing alloy and the thickness of reaction product formed at $Si_3N_4$/brazing alloy joint interface was abruptly increased, which could increase the amounts of residual stress developed in the joint. The fracture strength of brazed $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer at 950${\circ}C$ was much reduced comparing to those of joints brazed at the lower temperature. But, it was found that the effects of brazing time was not critical on the mechanical properties as well as the reliability of $Si_3N_4$/Stainless steel 316 joint with Cu buffer layer brazed at the temperature below 900${\circ}C$.

Wet Etch Process for the Fabrication of Al Electrodes and Al Microstructures in Surface Micromachining (표면 미세가공에서 Al 전극 및 Al 미세 구조물 제작을 위한 습식 식각 공정)

  • Kim, Sung-Un;Paik, Seung-Joon;Lee, Seung-Ki;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Aluminum metal process in surface micromachining enables to fabricate Al electrodes or Al structures, which improve electrical characteristics by reducing contact- and line-resistance or makes the whole process to be simple by using oxide as sacrificial layer. However, it is not possible to use conventional sacrificial layer etching process, because HF solution attacks aluminum as well as sacrificial oxide. The mixed solution of BHF and glycerine as an alternative shows the adequate properties to meet with this end. The exact etching properties, however, are sensitively depends on the geometry of the released structure, because the most etching process of sacrificial layer proceeds to the lateral direction in narrow space. Also, the surface roughness of aluminum affects to the etching characteristics. This paper reports experimental results on the effect of microstructure and surface roughness of aluminum to the etching properties. Considering these effects, we propose the optimized etching condition, which can be used practically for the fabrication of aluminum electrodes and microstructures by using standard surface micromachining process without modification or additional process.

  • PDF

Fatigue Life of the Repair TIG Welded Hastelloy X Superalloy

  • SIHOTANG, Restu;CHOI, Sang-Kyu;PARK, Sung-Sang;BAEK, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.26-30
    • /
    • 2015
  • Hastelloy X in this study was applied in jet engine F-15 air fighter as shroud to isolate the engine from outer skin. After 15 years operation at elevated temperature the mechanical properties decreased gradually due to the precipitation of continues second phases in the grain boundaries and precipitated inside the grain. The crack happened at the edge of the shroud due to the thermal and mechanical stress from jet engine. Selective TEM analysis found that the grain boundaries consist of $M_{23}C_6$ carbide, $M_6$ Ccarbide and small percentage of sigma(${\sigma}$) phase. Furthermore, it was confirmed the nano size of ${\sigma}$ and miu (${\mu}$) phase inside the grain. In this study, it was investigated the microstructure of the degraded shroud component and HAZ of repair welded shroud. In the HAZ, it was observed the dissolution of the $M_{23}C_6$ carbides and smaller precipitates, the migration of the undissolved larger $M_{23}C_6$ carbide and $M_6$ Ccarbide. It is also observed the liquation due to the simply melt of the segregated precipitates in the grain boundaries. Interestingly, the segregated second phases which simply melt in the grain boundaries more easily happened at higher heat input welding condition. High temperature tensile test was done at $300^{\circ}C$, $700^{\circ}C$ and $900^{\circ}C$. It was obtained that the toughness of welded sample is lower compare to the non-welded sample. The solution heat treatment at $1170^{\circ}C$ for 5 minutes was suggested to obtain a better mechanical properties of the shroud. The high cycle fatigue number of the repair welded shroud shows a much lower compare to the shroud. In addition, the high cycle fatigue number at room temperature after solution heat treatment was almost double compare to the before solution heat treatment under 420-500MPa stress amplitude. However, the high cycle fatigue number of repaired welded sample was shown a much lower compare to the non- welded shroud and solution treated shroud. One of the main reasons to decrease the tensile strength and the high cycle fatigue properties of the repair welded shroud is the formation of the liquid phase in HAZ.

Low Temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15 Ceramics (Ba5Nb4O15 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Kim, Jong-Dae;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.783-787
    • /
    • 2004
  • Microwave dielectric properties and the microstructure of $Ba_5Nb_4O_{15}$ ceramics with $PbO-B_2O_3-SiO_2$ glass frit were investigated to reduce the sintering temperature of $Ba_5Nb_4O_{15}$ ceramics as a function of the amount of glass frit from $0.5wt\%$ to $10wt\%$ and the sintering condition. The sintered density and the microwave dielectric properties of $Ba_5Nb_4O_{15}$ ceramics were remarkably changed with the amount of glass fit which existed as a liquid phase and assisted the densification. $Ba_5Nb_4O_{15}$ with $3wt\%$ $PbO-B_2O_3-SiO_2$ glass frit sintered at $900^{\circ}C$ for 2 h showed dielectric constant (K) of 41.4, a quality factor (Q $\times$f) of 13,485 GHz, and a Temperature Coefficient of resonant Frequency (TCF) of 9 ppm/$^{\circ}C$. Due to no trace of physical and chemical reaction between this composition and Ag electrode cofired at $900^{\circ}C$ for 2 h, this ceramics can be a good candidate for the multilayer dielectric filter.

Magnetic properties of Sr-ferrite by La-Co substitution (La-Co 치환량에 따른 스트론튬 페라이트의 자기특성)

  • 장세동
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.16-20
    • /
    • 2002
  • This experiment was carried out to examine the effects of La-Co substitution on Sr-ferrite. The magnetic properties of calcined and sintered materials varied with the substitutional amount of La and Co elements in Sr-ferrite. Anisotropy field and coercivity for Sr ferrite were increased with raising La-Co substitution amounts. The microstructure observation for Sr ferrite substituted by La-Co revealed that La-Co inhabited grain growth during calcination and promoted lateral grain growth during sintering. The relationship between $B_{r}$ and $_{i}$ /$H_{c}$ for La-Co substituted Sr-ferrite was found to be $B_{r}$$≒0.097_{i}$ /$H_{c}$/+4500. In case of $SrFe_{12}$ $O_{19}$, $B_{r} was 4090 G and $_{ i}$$H_{c}$ was 3560 Oe, but $B_{r}$ was 4080 G and and $_{i}$ $H_{c}$ was 4800 Oe for $Sr_{0.7}$ $La_{0.3}$ $Fe_{11.7}$ /$Co_{0.3}$ $O_{19}$.

Morphology of La-Co substituted SrM ferrite (La-Co치환량에 따른 스트론튬 페라이트의 미세구조)

  • Jang, Se-Dong
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.31-36
    • /
    • 2004
  • This experiment was carried out to examine the effects of morphology on properties of La-Co substituted SrM ferrite. The magnetic properties of calcined and sintered materials were varried with the substitutional amount of La and Co elements in Sr-ferrite. In the substituted SrM ferrite, the atomic fraction x of La is directly related to the mole ratio n of iron oxide and the atomic fraction y of Co by equation x=2ny. The Hcj values of the calcined powder were about 270 kA/m and 240 kA/m with x=0.3 and x=0.2, respectively at stoichiometry, n=6.0. Crystallites of the sintered material were grown with a plate shape, and their size decreased with increasing mole ratios. Such a shape was caused by the initial state of crystallite formed after calcination. In case of x=0.3 and n=6.0, Br was 415 mT and Hcj was 355 kA/m, and in x=0.2 and n=6.0, Br was 410 mT and Hcj was 370 kA/m. The squareness in 2nd quarter of BH curve with x=0.2 was smoothly improved to compared with x=0.3.

Studies on Conservation and Metallographic Manufacturing Technique of Iron Mirror in the Korean Christian Museum at Soongsil University Collections (숭실대학교 한국기독교박물관 소장 철제거울의 보존과 금속조직분석을 통한 제작기법 연구)

  • Kim, Haena;Lee, Hyojin;Kim, Sooki
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Ancient mirrors are generally made of bronze, and it is very rare to find cases of iron mirrors excavated domestically. In this study, the unidentified ferrous artifact was treated for conservation, and was identified as a mirror. In this process, the sample was taken and analyzed for microstructure, and the manufacturing technology was studied. Analysis involved optical microscope, micro-hardness tester, and SEM-EDS. As the result of analysis, iron mirror structure exist not almost non-metallic inclusions, and partially network cementite was observed. This appears to have been caused by reduced carbon content due to decarburizing the cast iron in the solid state mirror which was created by cast iron. The ledeburite structure of the casting has difficult to cut or polish because has great hardness by high carbon content. Thus, the cast iron mirror was decarburized at a temperature under $850^{\circ}C$ with CO or $CO_2$ blocked, which reduced the hardness of the iron mirror and made it possible to polish the mirror surface. This deformation of structure according to carbon content results from such manufacturing technology.

Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays (유기클레이의 선택적 분산에 의한 폴리프로필렌/아이오노머/클레이 나노복합체의 유변학 및 형태학적 특성 연구)

  • Kim, Doohyun;Ock, Hyun Geun;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.709-716
    • /
    • 2015
  • In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1~10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene-ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.