• Title/Summary/Keyword: Microstructure development

Search Result 652, Processing Time 0.034 seconds

Analytical Quantification and Effect of Microstructure Development in Thick Film Resistor Processing

  • Lee, Byung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.33-37
    • /
    • 2012
  • Microstructure developments of $RuO_2$ based thick film resistors during firing as a function of glass viscosity were analytically quantified and its effect on the electrical property was investigated. The microstructure development was retarded as the viscosity of glass was increased. It was found that the viscosity range for each stage of microstructure development are as follows ; $7500-10^5Pa{\cdot}s$ for the glass sintering, $2000-7500Pa{\cdot}s$ for the glass island formation, $700-2000Pa{\cdot}s$ for the glass spreading, and $50-700Pa{\cdot}s$ for the infiltration. The sheet resistivity decreased as the viscosity of glass in the resistor film increased due to the higher chance of sintering for the conductive particles with the higher viscosity of the glass.

Effects of Physical Properties of Glass on the TCR of $RuO_2$ Thick Film Resistors for Hybrid Integrated Circuits (HIC) (HIC용 $RuO_2$ 후막저항체에서 유리의 물리적 성질이 TCR에 미치는 영향)

  • Lee, B.S.;Lee, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.974-978
    • /
    • 1993
  • Glass viscosity effects on the electrical properties and microstructure of RuO2 based thick film resistors (TFR) using alumina modified lead borosilicate glasses were studied. AT 85$0^{\circ}C$, the glass viscosities were increased from 4.24Pa.s to 51.5Pa.s when the alumina was added from none to 14 weight percent to the standard glass of 63% PbO, 25% B2O3 and 12% SiO2. The resistivities of resistors were generally decreased and the microstructure development was retarded as the viscosity of the glass increased. This is contrary to the generally accepted thought that the low resistivity is due to fast microstructure development kinetics in TFR. Even though the glass viscosity retards the microstructure development kinetics, the overall network formations are favored for higher viscosity of glass, such that the sheet resistivities were decreased as the glass viscosity increased.

  • PDF

Gradient Microstructure and Mechanical Properties of Fe-6%Mn Alloy by Different Sized Powder Stacking (다른 크기의 분말 적층을 통해 얻은 Fe-6%Mn합금의 경사 미세조직과 기계적 특성)

  • Seo, Namhyuk;Lee, Junho;Shin, Woocheol;Jeon, Junhyub;Park, Jungbin;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.382-389
    • /
    • 2022
  • A typical trade-off relationship exists between strength and elongation in face-centered cubic metals. Studies have recently been conducted to enhance strength without ductility reduction through surface-treatment-based ultrasonic nanocrystalline surface modification (UNSM), which creates a gradient microstructure in which grains become smaller from the inside to the surface. The transformation-induced plasticity effect in Fe-Mn alloys results in excellent strength and ductility due to their high work-hardening rate. This rate is achieved through strain-induced martensitic transformation when an alloy is plastically deformed. In this study, Fe-6%Mn powders with different sizes were prepared by high-energy ball milling and sintered through spark plasma sintering to produce Fe-6%Mn samples. A gradient microstructure was obtained by stacking the different-sized powders to achieve similar effects as those derived from UNSM. A compressive test was performed to investigate the mechanical properties, including the yielding behavior. The deformed microstructure was observed through electron backscatter diffraction to determine the effects of gradient plastic deformation.

Interface and Microstructure Development in Carbon/Carbon Composites

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.;Dhakate, S.R.;Rand, B.
    • Carbon letters
    • /
    • v.5 no.2
    • /
    • pp.62-67
    • /
    • 2004
  • Performance of carbon-carbon composites is known to be influenced by the fibre matrix interactions. The present investigation was undertaken to ascertain the development of microstructure in such composites when carbon fibres possessing different surface energies (T-300, HM-35, P120 and Dialed 1370) and pitch matrices with different characteristics (Coal tar pitch $SP110^{\circ}C$ and mesophase pitch $SP285^{\circ}C$) are used as precursor materials. These composites were subjected to two different heat treatment temperatures of $1000^{\circ}C$ and $2600^{\circ}C$. Quite interesting changes in the crystalline parameters as well as the matrix microstructure are observed and attempt has been made to correlate these observations with the fibre matrix interactions.

  • PDF

PREDICTION OF MICROSTRUCTURE EVOLUTION AND HARDNESS DISTRIBUTION IN THE WELD REPAIR OF CARBON STEEL PIPELINE

  • Li, Victor;Kim, Dong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.205-210
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial [mite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

Prediction of Microstructure Evolution and Hardness Distribution in the Weld Repair of Carbon Steel Pipeline

  • Li, V.;Kim, D.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial finite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that Implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

The Development of Microstructure in $Si_3N_4$-Bonded SiC Refractory ($Si_3N_4$ 결합 SiC 내화재료에 있어서 생성된 $Si_3N_4$의 미구조 변화)

  • 최덕균;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 1982
  • This paper deals with the $Si_3N_4$-bonded SiC refractory in terms of its microstructure development during nitridation. When mixture of SiC grains and fine Si power is fired under nitrogen atmosphere, an interlocking network of $Si_3N_4$ whiskers is formed by nitridation of Si. It is found that the strength of $Si_3N_4$-bonded SiC refractory is soley due to the physical nature of this interlocking whiskers. At the initial stage of nitridation, $Si_3N_4$ whisker forms in very thin and long shape and, with further nitridation, it becomes thicker with diameters up to 0.35$\mu\textrm{m}$. It is found that the mechanical strength of $Si_3N_4$-bonded SiC refractory depends on the degree of nitridation and the development of microstructure.

  • PDF

Heat Treatment Effect on the Microstructure of 8YSZ Thick Film (열처리 온도에 따른 8YSZ 후막의 미세구조)

  • Han, Sang-Hoon;Noh, Hyo-Seop;Na, Dong-Myung;Jin, Guang-Hu;Lee, Woon-Young;Park, Jin-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.106-109
    • /
    • 2011
  • In order to fabricate 8YSZ thick film by silk screen printing, YSZ(yttria-stabilized zirconia) commercial powder was used as starting materials. Paste for screen printing was made by mixing 8YSZ powder and organic vehicles. 8YSZ thick film was formed on $Al_2O_3$ substrate. The crystal structure, and microstructure were investigated. Grain size of 8YSZ was increased with increasing calcination temperature and rapid grain growth was shown after calcination at $1300^{\circ}C$. Microstructure showed the mixture of large and small grain size after $1400^{\circ}C$ sintering. Shrinkage rate of 8YSZ thick film sintered at $1400^{\circ}C$ was more than 40%.

Role of Interface on the Development of Microstructure in Carbon-Carbon Composites

  • Dhakate, S.R.;Mathur, R.B.;Dhami, T.L.;Chauhan, S.K.
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.192-197
    • /
    • 2002
  • Microstructure plays an important role in controlling the fracture behaviour of carbon-carbon composites and hence their mechanical properties. In the present study effort was made to understand how the different interfaces (fiber/matrix interactions) influence the development of microstructure of the matrix as well as that of carbon fibers as the heat treatment temperature of the carbon-carbon composites is raised. Three different grades of PAN based carbon fibres were selected to offer different surface characteristics. It is observed that in case of high-strength carbon fiber based carbon-carbon composites, not only the matrix microstructure is different but the texture of carbon fiber changes from isotropic to anisotropic after HTT to $2600^{\circ}C$. However, in case of intermediate and high modulus carbon fiber based carbon-carbon composites, the carbon fiber texture remains nearly isotropic at $2600^{\circ}C$ because of relatively weak fiber-matrix interactions.

  • PDF