• 제목/요약/키워드: Microstructure analysis

검색결과 1,528건 처리시간 0.024초

석탄 부산물인 경석을 잔골재로 사용한 콘크리트의 특성 (Characteristics of Concrete Using Coal-By-product as Fine Aggregate)

  • 양인환;정승태;박근우;최경민
    • 한국건설순환자원학회논문집
    • /
    • 제12권1호
    • /
    • pp.53-62
    • /
    • 2024
  • 본 논문에서는 석탄 부산물인 경석을 잔골재로 사용하여 제작한 콘크리트의 강도 및 물성 실험 연구를 수행하였다. 본 연구에서는 석탄 부산물 골재 함유량과 플라이애시 함유량을 실험변수로 고려하였다. 천연 잔골재의 50 %와 100 %(부피 기준)를 석탄 부산물로 치환하였고 물-바인더 비는 0.38로 고정하였다. 또한, 일부 배합은 OPC 바인더의 30 %를 플라이애시로 치환하여 콘크리트 시편을 제작하였다. 단위질량, 압축강도, 쪼갬인장강도 및 휨인장강도를 실험을 진행하고 실험결과 분석을 수행하였다. 플라이애시 바인더가 함유되고 천연 잔골재 대비 석탄 부산물 골재의 치환율이 증가할수록 콘크리트 단위질량, 압축강도, 쪼갬인장강도 및 휨인장강도는 감소하였다. 또한, 미세구조 실험인 TGA와 SEM 실험을 진행하여 구간별 열중량분석과 ITZ를 분석하였다.

GC250D의 가스분위기 제어질화 공정에서 화합물층의 형성에 따른 표면조도의 변화 (Surface Roughness and Formation of Compound Layer in the Controlled Gaseous Nitriding Process on Cast Iron GC250D)

  • 정민재;손석원;위재용;이영국;이원범
    • 열처리공학회지
    • /
    • 제37권2호
    • /
    • pp.49-57
    • /
    • 2024
  • We investigated the changes in microstructure and surface roughness of the compound layer of GC250D gray cast iron, commonly used in brake discs, during gas nitriding. The gas atmosphere of the nitriding process was controlled with a hydrogen partial pressure of 49.5%, and the process was conducted at a nitriding temperature of 520℃ with various process times. As the nitriding process time of the GC250D material increased, both the depth of hardening and the thickness of the compound layer increased, with a maximum surface hardness of approximately 1265 HV0.1 was measured. Additionally, the surface roughness increased with the process time. Phase analysis of the compound layer revealed an increase in the proportion of the γ' phase as the nitriding process time increased. Changes in the formation of the compound layer were observed depending on the orientation of graphite within the material, leading to the formation of wedges. Therefore, the increase in surface roughness appears to be attributed to the uneven compounds, the expansion of the compound layer and wedges formed on the surface during the nitriding process.

Microstructural and corrosion behavior of D3 tools steel and 440C SS for blade application

  • Nur Maizatul Shima Adzali;Nurul Abidah Mohamad Khapeli;Alina Rahayu Mohamed
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.183-194
    • /
    • 2024
  • D3 tools steel and 440C stainless steel (SS) are normally being employed for application such as knife blade and cutting tools. These steels are iron alloys which have high carbon and high chromium content. In this study, lab work focused on the microstructural and corrosion behavior of D3 tools steel and 440C SS after went through heat treatment processes. Heat treatments for both steels were started with normalizing at 1020 ℃, continue with hardening at 1000 ℃followed by oil quenching. Cryogenic treatment was carried out in liquid nitrogen for 24 hours. The addition of cryogenic heat treatment is believed to increase the hardness and corrosion resistance for steels. Both samples were then tempered at two different tempering temperatures, 160 ℃ and 426 ℃. For corrosion test, the samples were immersed in NaCl solution for 30 days to study the corrosion behavior of D3 tool steel and 440C SS after heat treatment. The mechanical properties of these steels have been investigated using Rockwell hardness machine before heat treatment, after heat treatment (before corrosion) and after corrosion test. Microstructure observation of samples was carried out by scanning electron microscopy. The corrosion rate of these steels was calculated after the corrosion test completed. From the results, the highest hardness is observed for D3 tool steel which tempered at 160 ℃(54.1 HRC). In terms of microstructural analysis, primary carbide and pearlite in the as-received samples transform to tempered martensite and cementite after heat treatment process. From this research, for corrosion test, heat treated 440C SS sample tempered with 426 ℃possessed the excellent corrosion resistance with corrosion rate 0.2808 mm/year.

CSC 기반 저탄소 콘크리트 2차제품 제조를 위한 OPC 페이스트의 촉진탄산화 특성에 관한 실험적 연구 (Experimental Study on Accelerated Carbonation Characteristics of OPC Paste for CSC-Based Low Carbon Precast Concrete Products)

  • 윤준태;김영진;심상락;류동우
    • 한국건축시공학회지
    • /
    • 제24권3호
    • /
    • pp.285-295
    • /
    • 2024
  • 본 연구에서는 500℃·hr의 증기양생을 실시한 OPC 페이스트에 대하여 1atm 20% 농도의 CO2와 5atm 99% 농도의 고농도 CO2 조건 하의 촉진 탄산화의 영향평가를 수행하였다. 이를 위하여 XRD, FT-IR을 통한 화학적 분석과 SEM, 압축강도 측정을 통한 물리적 특성 분석을 실시하였다. 그 결과 CO2 20% 농도의 상압 탄산화를 수행하는 경우 뚜렷한 내부 조직구조 치밀화 및 압축강도 증진 효과를 관찰할 수 있었고, CO2 99% 농도의 5atm 가압 탄산화를 실시할 경우 표면조직구조가 빠르게 치밀해지며 CO2 확산침투율이 크게 떨어지게 되어 압축강도 등 유의미한 수준의 물리적 특성 개선이 일어날 정도의 탄산화를 진행할 수 없었다.

Advanced radiation shielding materials: PbO2-doped zirconia ceramics synthesized through innovative sol-gel method

  • Islam G. Alhindawy;Mohammad. W. Marashdeh;Mamduh. J. Aljaafreh;Mohannad Al-Hmoud;Sitah Alanazi;K. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2444-2451
    • /
    • 2024
  • This work demonstrates a new sol-gel approach for synthesizing PbO2-doped zirconia using zircon mineral precursors. The streamlined methodology enables straightforward fabrication of the doped zirconia composites. Comprehensive materials characterization was performed using XRD, SEM, and TEM techniques to analyze the crystal structure, microstructure, and morphology. Quantitative analysis of the XRD data provided insights into the nanoscale crystallite sizes achieved, along with their relationship to lattice imperfections. Furthermore, the gamma-ray shielding capacity for the PbO2-doped zirconia samples was estimated by the Monte Carlo simulation, which proves an increase in the gamma ray shielding properties by raising the Pb concentration. The linear attenuation coefficient increased between 0.467 and 0.499 cm-1 (at 0.662 MeV) by increasing the Pb content between 11 and 21 wt%. By increasing the Pb content to 21 wt%, the synthesized composites' lead equivalent thickness reaches 2.49 cm. The radiation shielding properties for the synthesized composites revealed a remarkable performance against low and intermediate γ-ray photons, with radiation shielding capacity of 37.3 % and 21.4 % at 0.662 MeV and 2.506 MeV, respectively. As a result, the developed composites can be employed as an alternative shielding material in hospitals and radioactive zones.

REDUCTION OF THERMAL CONDUCTIVITY THROUGH THE DISPERSION OF TiC NANOPARTICLES INTO A P-TYPE Bi0.5Sb1.5Te3 ALLOY BY BALL MILLING AND SPARK PLASMA SINTERING

  • CHEENEPALLI NAGARJUNA;BABU MADAVALI;MYEONG-WON LEE;SUK-MIN YOON;SOON-JIK HONG
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.551-557
    • /
    • 2019
  • The dispersion of nanoparticles in the host matrix is a novel approach to enhance the thermoelectric performance. In this work, we incorporate the TiC (x = 0, 1 and 2 wt.%) nanoparticles into a p-type Bi0.5Sb1.5Te3 matrix, and their effects on microstructure and thermoelectric properties were systematically investigated. The existence of TiC contents in a base matrix was confirmed by energy dispersive X-ray spectroscopy analysis. The grain size decreases with increasing the addition of TiC content due to grain boundary hardening where the dispersed nanoparticles acted as pinning points in the entire matrix. The electrical conductivity significantly decreased and the Seebeck coefficient was slightly enhanced, which attributes to the decrease in carrier concentration by the addition of TiC content. Meanwhile, the lowest thermal conductivity of 0.97 W/mK for the 2 wt.% TiC nanocomposite sample, which is ~16% lower than 0 wt.% TiC sample. The maximum figure of merit of 0.90 was obtained at 350 K for the 0 wt.% TiC sample due to high electrical conductivity. Moreover, the Vickers hardness was improved with increase the addition of TiC contents.

EFFECT OF T6 HEAT TREATMENT ON THE SCRATCH WEAR BEHAVIOR OF EXTRUDED Al-12WT.%Si ALLOY

  • YEON-JI KANG;JONG-HO KIM;JONG-IL HWANG;KEE-AHN LEE
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.617-622
    • /
    • 2019
  • This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10-1 mm3 and 7.8×10-2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.

산질화된 GC250의 화합물층 형성 및 내식성에 미치는 산화 온도의 영향 (Effect of Oxidation Temperature on Compound Layer Formation and Corrosion Resistance of Oxy-nitrided GC250)

  • 정민재;조균택;이원범
    • 열처리공학회지
    • /
    • 제37권5호
    • /
    • pp.207-214
    • /
    • 2024
  • This study examines the effects of post-oxidation treatment on the microstructure and corrosion resistance of GC250 cast iron. The nitriding process was conducted at 570℃ for 180 minutes with a fixed nitriding potential (Kn) of 1.5, followed by post-oxidation at 450℃, 500℃, and 550℃ for 120 minutes. The post-oxidized specimens showed increased surface hardness and case depth compared to the nitrided specimens, with a maximum surface hardness of approximately 890 HV0.1. The oxidation process increased the thickness of the nitrided layer by more than 3 ㎛, with the oxide layer thickness reaching up to 2.5㎛ as the oxidation temperature increased. XRD analysis identified the presence of ε-phase, γ'-phase, and Fe3O4 phase on the surface. Polarization tests revealed that the specimen treated at the highest oxidation temperature had a corrosion current density of 20.26 ㎂/cm2 and a corrosion potential of -0.22V, indicating enhanced corrosion resistance compared to the nitrided specimen. This improvement is attributed to the formation and increased thickness of the oxide layer, which enhances corrosion resistance. In conclusion, the oxide layer formed through post-oxidation treatment significantly improves the corrosion resistance of GC250 cast iron, with the effect becoming more pronounced at higher oxidation temperatures.

Effect of Cu Addition on Oxide Growth of Al-7 mass%Mg Alloy at High Temperature

  • Seong-Ho Ha;Abdul Wahid Shah;Bong-Hwan Kim;Young-Ok Yoon;Hyun-Kyu Lim;Shae K. Kim
    • Archives of Metallurgy and Materials
    • /
    • 제66권3호
    • /
    • pp.699-702
    • /
    • 2021
  • Effect of Cu addition on oxide growth of Al-7 mass%Mg alloy at high temperature was investigated. As-cast microstructures of Al-7 mass%Mg and Al-7 mass%Mg-1 mass%Cu alloys showed α-Al dendrites and area of secondary particles. The 1 mass%Cu addition into Al-7 mass%Mg alloy formed Mg32(Al, Cu)49 ternary phase with β-Al3Mg2. The total fraction of two Mg-containing phases in Cu-added alloy was higher than the β-Al3Mg2 fraction in Cu-free alloy. From measured weight gains depending on time at 500℃ under an air atmosphere, it was shown that all samples exhibited significant weight gains depending on time. Al-7mass%Mg-1mass%Cu alloy showed the relatively increased oxidation rate when compared with Cu-free alloy. All the oxidized cross-sections throughout the entire oxidation time showed coarse and dark areas regarded as oxides grown from the surface to inside, but bigger oxidized areas were formed in the Al-7mass%Mg-1mass%Cu alloy containing higher fraction of Mg-based phases in the as-cast microstructure. As a result of compositional analysis on the oxide clusters, it was found that the oxide clusters contained Mg-based oxides formed through internal oxidation during a long time exposure to oxidizing environments.

코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가 (Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells)

  • 김광배;박태열;송오성
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2017
  • 염료감응형 태양전지 촉매층으로 CoSi의 신뢰성을 확인하기 위해 전자빔증착기를 이용하여 100 nm-Co/300 nm-Si/quartz의 적층구조를 형성하고, $700^{\circ}C$-60분의 진공열처리하여 약 350 nm-CoSi를 형성하였다. 이때 잔류 Co를 제거하기 위해 $80^{\circ}C$-30%의 황산처리를 진행하였다. 또한 비교를 위해 100 nm-Pt/glass 상대전극을 준비하였다. CoSi 상대전극이 채용된 DSSC 소자의 신뢰성을 확인하기 위해 $80^{\circ}C$ 온도조건에서 0, 168, 336, 504, 672, 840시간동안 유지하였다. 이들을 채용한 DSSC 소자의 광전기적 특성을 분석하기 위해 solar simulator와 potentiostat을 이용하였다. CoSi 상대전극의 촉매활성도, 미세구조, 그리고 조성 분석을 확인하기 위해 CV, FE-SEM, FIB-SEM, EDS를 이용하여 분석하였다. 시간에 따른 에너지변환효율 결과, Pt와 CoSi 상대전극 모두 에너지변환효율이 504시간까지는 유지되다가 672시간 경과 후 처음의 50%로 감소하는 특성을 보였다. 촉매활성도 분석 결과, 시간이 지남에 따라 Pt와 CoSi 상대전극 모두 촉매활성도가 감소하여 각각 64%, 57%의 촉매활성도를 보였다. 미세구조 분석 결과, CoSi층은 전해질에 대한 안정성은 우수하였으나, 하부 쿼츠 기판과 CoSi층의 접촉면에 스트레스가 집중되어 국부적으로 크렉이 형성되며, 궁극적으로 ${\mu}m$급의 박리현상을 확인하였다. 따라서 CoSi 상대전극은 실리사이드화 되는 과정에서 잔류응력 때문에 열화가 일어나므로 신뢰성의 확보를 위해서는 이러한 잔류응력의 대책이 필요하였다.