• 제목/요약/키워드: Microstructural Analysis

검색결과 522건 처리시간 0.03초

SOFC 음극용 Ni-YSZ 복합체의 미세구조와 전기적 물성간의 상관관계 : I. 미세구조 분석 (Correlatin between the Microstructure and the Electrical Conductivity of SOFC anode, Ni-YSZ : I. Microstructure Analysis)

  • 문환;이해원;이종호;윤기현
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.479-490
    • /
    • 2000
  • The microstructure of Ni-YSZ composite as an anode of SOFC was investigated as a function of Ni content(10-70 vol%) in order to examine the correlation between microstructural-and electrical property. Image analysis based on quantitative microscopy theory was performed to quantify the microstructural property. We could get the informations about the size and distribution, contiguity and interfacial area of each phase or between the phases from the image analysis. According to the image analysis, contiguity between the same phae was mainly dependent on the amount of the phase while the contiguity between different phases was additionally influenced by the microstructural changes, especailly by the coarsening of the Ni phase. The whole length of pores perimeter was increased as Ni content increased, which indicated the overall microstructural evolution was mostly related with the coarsening of Ni phase. Ni-Ni interfacial area was also gradually increased as Ni content increased but controlled by pore phase at low Ni content region and by YSZ phase at intermediate Ni content region. These quantified microstructural properties were used to characterize the electrical properties of Ni-YSZ composite.

  • PDF

유한요소법에 의한 열간단조공정에서 강의 미세조직변화 예측 (Prediction of microstructural evloution in hot forging of steel by finite element method)

  • 장용순;고대철;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.219-222
    • /
    • 1995
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The finite element method is applied to the prediction of the microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermomechanical properties during the deformation. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method were employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectveness of the proposed method, the experiment of hot compression process was accomplished and the results of experiment were compared with those of simulation. Consequently, this approach shows a good agreement with experimental results.

  • PDF

Influence of Thermal Annealing on the Microstructural Properties of Indium Tin Oxide Nanoparticles

  • Kim, Sung-Nam;Kim, Seung-Bin;Choi, Hyun-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.194-198
    • /
    • 2012
  • In this work, we studied the microstructural changes of ITO during the annealing process. ITO nanoparticles were prepared by the sol-gel method using indium tin hydroxide as the precursor. The prepared sample was investigated using TEM, powder XRD, XPS, DRIFT, and 2D correlation analysis. The O 1s XPS spectra suggested that the microstructural changes during the annealing process are closely correlated with the oxygen sites of the ITO nanoparticles. The temperature-dependent in situ DRIFT spectra suggested that In-OH in the terminal sites is firstly decomposed and, then, Sn-O-Sn is produced in the ITO nanoparticles during the thermal annealing process. Based on the 2D correlation analysis, we deduced the following sequence of events: 1483 (due to In-OH bending mode) ${\rightarrow}$ 2268, 2164 (due to In-OH stretching mode) ${\rightarrow}$ 1546 (due to overtones of Sn-O-Sn modes) ${\rightarrow}$ 1412 (due to overtones of Sn-O-Sn modes) $cm^{-1}$.

Microstructural Characterization of $CaTiO_3-NdAlO_3$-Based Ceramics

  • Suvorov, Danilo;Drazic, Goran;Valant, Matjaz;Jancar, Bostjan
    • 한국결정학회지
    • /
    • 제11권4호
    • /
    • pp.195-199
    • /
    • 2000
  • Ceramics based on CaTiO₃-NdAlO₃ solid solutions were synthesized in order to study their dielectric microwave properties. Microstructural analysis was performed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) using different analytical methods such as energy-dispersive X-ray spectroscopy (EDXS). It was observed that the heating conditions during sintering and cooling strongly affect the microstructural development of CaTiO₃-NdAlO₃-based ceramics. Various types and concentrations of structural defects were identified, for example, dislocations, twins and/or antiphase boundaries. all such defects resulted in a degradation of the dielectric microwave properties, in particular the quality factor Q. Dielectric properties of CaTiO₃-NdAlO₃-based ceramics can be improved by an appropriate thermal treatment of ceramics which results in a decrease in the concentrations of the identified microstructural defects.

  • PDF

유한요소법에 의한 열간성형공정에서 강의 미세조직변화 예측 (Prediction of Microstructural Evolution in Hot Forging of Steel by the Finite Element Method)

  • 장용순;고대철;김병민
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.129-138
    • /
    • 1998
  • The objective of this study is to demonstrate the ability of a computer simulation of microstructural evolution in hot forging of C-Mn steels. The development of microstructure is strongly dependent on process variables and metallurgical factors that affect time history of thermodynamical variables such as temperature, strain. and strain rate during deformation. Then finite element method is applied for the prediction of microstructural evolution, and it should be coupled with heat transfer analysis to consider the change of thermodynamical properties during forming process. In this study, Yada's recrystallization model and rigid-thermoviscoplastic finite element method are employed in order to analyze microstructural evolution during hot forging process. To show the validity and effectiveness of the proposed method, experiments are accomplished and the results of experiments are compared with those of simulations.

  • PDF

MICROSTRUCTURAL CHARACTERISTICS OF HOT FORGED AL 6061 ALLOY

  • Kwon Y.-N.;Lee Y.-S.;Lee J.-H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.55-58
    • /
    • 2003
  • Many researches have been already done on the issues of high temperature deformation and the microstructural evolution. The information has been very useful for the plasticity industry, especially successful for the extrusion. However, the parts made with forging usually have a complex shape. It is difficult to control the distribution of the variables like strain, strain rate and temperature rise due to the working heat during a hot-forging process. Consequently, the microstructural variation could be occurred depending on the plastic deformation history that the forged part would get during a hot forging. In the present study, the microstructural characteristic of a hot-forged 6061 aluminum alloy has been discussed on the aspect of grain size evolution. A forging of 6061 aluminum alloy has been carried out for a complex shape with a dimensional variation. Also, finite element analysis has been done to understand how the deformation variables such as strain, strain rate give an influence on the microstructure of a hot forged aluminum product.

  • PDF

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 (Analysis of Bridging Stress Effect of Polycrystalline aluminas Using Double Cantilever Beam Method)

  • 손기선;이선학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.583-589
    • /
    • 1996
  • In this study a new analytical model which can describe the relationship between the bridging stress and microstructure has beenproposed in order to investigate the microstructural effect on the R-curve behavior in polycrystalline aluminas since the R-curve can be derived via the bridging stress function. In the currently developed model function the distribution of grain size is considered as a microstructural factor in modeling of bridging stress function and thus the bridging stress function including three constants PM, n, and Cx, can be established analytically and quantitatively. The results indicate that the n value is closely related to the grain size distribution thereby providing a reliability of the current model for the bridging stress analysis. Thus this model which explains the correlation of the bridging stress distribution and microstructual parame-ters is useful for the systematic interpretation of microfracture mechanism including the R-curve behavior in polycrystalline aluminas.

  • PDF

탄소강관의 ERW 용접부 손상에 관한 연구 (Study on defect of ERW weldment of carbon steel pipes)

  • 이보영;이재윤;이성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.666-669
    • /
    • 2003
  • Electrical resistance welded steel pipes showed leakage failure within 5 years usage. Microstructural analysis and hardness test were carried out, whose results gave no evidences about the reason of failure. For the analysis, 3 kinds of ERW pipes with different heat inputs were produced. Microstructural differences according to the different heat inputs were detected. Differences of the amount of inclusion in the weld line were observed. It is concluded that the difference of heat input during ERW pipe production caused the microstructural changes which resulted in the leakage failure.

  • PDF

Alloy 718의 잉고트 파쇄공정시 재결정거동에 대한 해석 (Assessment of Recrystallization Behavior in Ingot-Breakdown Process of Alloy 718)

  • 염종택;이종수;김정한;김남용;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 2007
  • Recrystallization behavior during ingot-breakdown process of Alloy 718 was investigated with finite element analysis and experimental approaches. In order to analyze microstructural changes during the cogging process of an Alloy 718 ingot, the side-pressing and heat treatment tests were performed at different temperatures and ram speed. From the side-pressing and heat treatment test results, it was found that microstructural changes during hot forging of Alloy 718 ingot greatly influenced on a close interaction between dynamic and static-recrystallization behaviors. A recrystallization model of Alloy 718 was used to predict the complex microstructural variation during continuous heating and forging processes of the cogging, and the predicted grain size and its distribution were compared with the actual cogged Alloy 718 billet.

  • PDF