• Title/Summary/Keyword: Microstrip-slot line

Search Result 95, Processing Time 0.028 seconds

H-Plane Coupling Between Rectangular Microstrip antennas (구형 마이크로스트립 안테나의 H-Plane 상호결합)

  • Ko, Ji-Whan;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.46-52
    • /
    • 1985
  • A theoretical study of mutual coupling effects between two H-plane coupled microstrip patch antennas is presented. The radiation resistance and slot capacitance of a single micro-strip patch are calculated. To investigate the mutual coupling effects, the even and odd mode characteristic impedance and effective dielectric constants are obtained using the coupled microstrip line model. The S-parameter matrix elements 511,512 are used to study the mutual coupling e(facts in S-band frequency ranges for various patch spacings. Theoretical results and measurements are in good agreement.

  • PDF

Beam Steering Antenna Using Microstrip Patch with U-Slot for Wearable Fabric Applications (의복용 U-슬롯을 갖는 빔 조향 마이크로스트립 안테나)

  • Ha, Sang-Jun;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.754-760
    • /
    • 2011
  • Reconfigurable beam steering using microstrippatch antenna with U-slot is proposed for wearable fabric applications. The proposed antenna is manufactured on a fabric substrate, and designed to steer the beam directions at the operation frequency of 6.0 GHz. The U-shaped slot and the indirect feeding-techniques are utilized in designing the proposed antenna. By the configuration of two artificial switches($S_0$, $S_1$, $S_2$) in between the indirect feed and the antenna patch, the antenna has three beam directions. The maximum beam directions are steerable in the yz-plane(${\theta}=0^{\circ}$, $30^{\circ}$, $331^{\circ}$), and the overall HPBW is $115^{\circ}$. The measured peak gains are 6.11~6.69 dBi.

Microstrip Slot Array Antenna Design by Using Tansmission Line Model (전송선로 모델을 이용한 마이크로스트립 슬롯 배열 안테나 설계)

  • 한석진;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.610-618
    • /
    • 2000
  • A T-shaped microstripline -fed printed slot antenna is anlayzed by using the transmission line model(TLM) in this paper. Microstrip-slotline junction is modeled by employing a transformer and the transformer turn ratio is derived empirically. The method is extended to the case of $1\times2,l\times4$array antennas. Return loss results obtained by using the transmission line model. The maximum measured results and demonstrated the usefulness of the transmission line model. The maximum bandwidths of a single antenna, $1\times2,l\times4$ array antennas are 28.5%, 47.8%, and 50.9%, respectively, for the VSWR$\leq2$. The gain of $1\times4$ array antenna is 7.97dBi and the beamwidth is about $27^{\circ}$.

  • PDF

Design and Performance Evaluation of IR-UWB Tapered Slot Antenna for Optimum Impulse Radio Radiation (임펄스 신호 방사를 위한 IR-UWB용 테이퍼 슬롯 안테나 설계 및 성능평가)

  • Kim, Jong-Min;Koh, Young-Mok;Ra, Keuk-Whan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.103-115
    • /
    • 2012
  • In this paper, design and performance evaluation of Tapered Slot Antenna for IR-UWB which propagates impulse radio is performed. TSA which has directional characteristic in UWB band should have low radiation loss and minimized impulse radiation distortion. In order to achieve these objectives, the paper designed wide band Impedance transformer and microstrip-slotline transit region structured TSA feeder line. By using the fabricated TSA, the radiation pattern was measured in the radio anechoic chamber. Pulse fidelity and distortion equation was induced to evaluate time domain characteristics according to the impulse radiation. Pulse fidelity of Impulse radiation show favorable results more than 93% within ${\pm}30^{\circ}$ beam width.

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.

A study on the Design and Fabrication of Microstrip Array Antenna for Ultra Wideband Applications (초광대역 마이크로스트립 안테나의 설계와 제작에 관한 연구)

  • Ham, Min-Su;Choi, Byung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.503-507
    • /
    • 2007
  • In this paper, the ultra-widebend, microstrip patch antenna with the bandwidth of 3 GHz was implemented for ultra-wideband(UWB) wireless communication applications. In order to cover the very wide bandwidth of 3 GHz, a multi-resonance antenna was designed, each resonance frequency was separated into five frequency bend, 7.5, 8.1, 8.7, 9.3, and 9.9GHz with the interval of 600MHz BW. And for wideband characteristics of each antenna, U-slot antennas were designed at each center frequency. Designed five U-slot antennas were connected in series for multi-resonance of 3GHz BW and wideband matching was also designed for impedance matching transmission line calculated. The relative dielectric constant, the height, the loss tangent of the PCB substrate were ${\epsilon}_r=4.8,\;h=0.6$ and loss tangent=0.0009 respectively. The implemented antenna's radiation patterns and gain were directivity characteristics and $1.46{\sim}4.08dBi$ at the five separated center frequency.

Multi-Band Chip Slot Antenna for Mobile Devices (무선 통신 기기에 적합한 다중 대역 칩 슬롯 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1264-1271
    • /
    • 2009
  • In this paper, the chip slot antenna which is used for mobile devices and designed for multi-band is proposed. The proposed antenna is comprised of a chip antenna(10 mm$\times$20 mm$\times$1.27 mm) and a system circuit board(30 mm$\times$60 mm$\times$0.8 mm). The chip slot antenna is mounted on the system circuit board and the end of F-type strip line which is patterned on the chip antenna is connected by a via with a ground plane of the system circuit board. So, a chip antenna radiates effectively the energy by transition between a microstrip line of the system circuit board and a open slot structure of the chip antenna. In the results of proposed antenna, impedance bandwidth of 3:1 VSWR(-6 dB return loss) is 1.98 GHz(1.61~3.59 GHz) and 0.8 GHz(5.2~6 GHz). So, it can cover multi-band of DCS, PCS, UMTS, WLAN. The proposed antenna can be applied to mobile devices.

A Branch-Line Hybrid Using Triangle-Patch Type Artificial Transmission Line (삼각 패치형 인공 전송 선로를 이용한 브랜치 라인 하이브리드)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.768-773
    • /
    • 2012
  • A branch-line hybrid using microstrip artificial transmission lines(ATLs) with slotted-triangular patches is proposed. The proposed artificial transmission line is compact in structure as well as easy to adjust the characteristic impedance and electrical length of equivalent transmission line by changing the slot's parameters; hence, it is useful for miniaturizing conventional transmission lines. The designed branch-line hybrid, because of the use of the right angled isosceles triangular shaped artificial transmission lines as building blocks, has no useless empty space, and hence optimally miniaturized. A fabricated 3 dB branch-line hybrid shows the coupling variation of ${\pm}0.5$ dB and the phase difference between two output ports of $91^{\circ}{\pm}4^{\circ}$ within 15 % bandwidth at 2.45 GHz center frequency. The size of proposed branch-line hybrid is only 38% of the conventional branch-line hybrid.

Circuit Model Analysis for Traces that Cross a DGS

  • Jung, Kibum;Lee, Jongkyung;Chung, Yeon-Choon;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.240-246
    • /
    • 2012
  • This paper presents a novel modeling technique for traces that cross a defected ground structure. A simple and accurate equivalent circuit model provides clear insight into the coupling mechanism between a microstrip line and a slot or split. The circuit models consist of a transformer as the coupling mechanism and LC resonators as the ground with a slot or split structure. Resistors, capacitors, and inductors are added to the model to increase accuracy and equivalence at high frequency. Simulated and measured S-parameters are presented for defected ground structures. The accuracy and validity of the proposed equivalent circuit model is verified by evaluation of the S-parameter characteristics of the defected ground structures and comparison with measured results.

Study on Coupling Characteristics between TE01δ Mode Dielectric Resonator and Coplanar Waveguide Structure (TE01δ 모드 유전체 공진기와 코플래나 웨이브가이드 구조들과의 결합 특성 연구)

  • Kim, Jong-Hyuk;Kim, Ihn S.
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.147-155
    • /
    • 2005
  • In this paper, we propose that three uniform coplanar waveguides(CPWs), such as a conventional, finite grounded(FG), and grounded(G) CPWs, can be coupled with a $TE_{01{\delta}}$ mode dielectric resonator(DR) for a parallel resonant characteristic as a microstrip line coupled with the DR. Coupling characteristics have been investigated by placing the DR on a dielectric support above the CPWs and by moving the DR away from the center of a slot of the CPWs to the ground plane. FEM simulation(HFSS) results in terms of S-parameters agree well with measurement results. Finally, unloaded Q values of the DR coupled with the three uniform CPWs are compared with those of the DR coupled with a microstrip line. The comparison shows that the DR coupled with the three CPWs has higher unloaded Qs than that coupled with a microstrip line and that the GCPW case has the highest unloaded Qs.

  • PDF