• Title/Summary/Keyword: Microstrip resonator

Search Result 225, Processing Time 0.021 seconds

Analysis of the Spherical-Rectangular Patch Microstrip Resonator (구면사각패치 마이크로스트립 공진기 해석)

  • Yang, Doo-Young;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.25-31
    • /
    • 1990
  • We analyze the spherical-rectangular patch microstrip resonator with conformal surface by the cavity model and derive the formulas to calculate resonant frequency in the consideration of effective dielectric constant in order to minimize the errors of resonant frequency due to the fringing fields. A transmission type spherical-rectangular patch microstrip resonator operating at 3GHz, for example, is designed and fabricated on Epsilam-10 substate. Measuring data of resonant frequency and return loss are 2.985 GHz and -44.4dB respectively. Those well agreed with theoretical values.

  • PDF

Research on Low Phase Noise Oscillator Using Microstrip Square Open Loop Resonator (Microstrip Square Open Loop Resonator를 이용한 저위상 잡음 발진기에 관한 연구)

  • Park Eun-Young;Seo Chulhun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.1 s.104
    • /
    • pp.17-23
    • /
    • 2006
  • This paper has presented a low phase noise oscillator using a square open loop with microstrip structure. A square open loop resonator has a large coupling coefficient value, which makes a high Q value, and has reduced phase noise. This oscillator has presented the oscillation frequency of 5.84 GHz, harmonics of -15.83 dBc and the phase noise of -111.17 dBc/Hz at the offset frequency of 100 kHz. In conclusion, the proposal structure has improved phase noise of 15 dB at the offset frequency of 100 kHz compared with the conventional structure of oscillator.

Analysis of Novel Approach to Design of Ultra-wide Stopband Microstrip Low-Pass Filter Using Modified U-Shaped Resonator

  • Karimi, Gholamreza;Lalbakhsh, Ali;Dehghani, Khatereh;Siahkamari, Hesam
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.945-950
    • /
    • 2015
  • A novel microstrip low-pass filter is presented to achieve an ultra-wide stopband with 11 harmonic suppression and very sharp skirt characteristics. The filter is composed of a modified U-shaped resonator (which creates two fully adjustable transmission zeroes), a T-shaped resonator (which determines a cut-off frequency), and four radial stubs (which provide a wider stopband). The operating mechanism of the filter is investigated based on a proposed equivalent-circuit model, and the role of each section of the proposed filter in creating null points is theoretically discussed in detail. The presented filter with 3 dB cut-off frequency ($f_c=2.35GHz$) has been fabricated and measured. Results show that a relative stopband bandwidth of 164% (referred to as a 22 dB suppression) is obtained while achieving a high figure-of-merit of 15,221.

RF Oscillator Improved Characteristics of Phase Noise Using Ring type DGS (위상잡음을 개선한 링형 DGS 공진기를 이용한 RF 발진기)

  • Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1581-1586
    • /
    • 2012
  • In this paper, a novel resonator using ring type DGS is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator, and oscillator for 5.8GHz band is designed using proposed DGS resonator. The ring type DGS resonator is composed of DGS cell etched on ground plane under $50{\Omega}$ microstrip line. At the fundamental frequency of 5.8GHz, 7.6dBm output power and -82.7 dBc@100kHz phase noise have been measured for oscillator with ring type DGS resonator. The phase noise characteristics of oscillator is improved about 9.5dB compared to one using the general ${\lambda}/4$ microstrip resonator. Because it is possible that varactor diode or lumped capacitor is placed on the gaps of ring type DGS, resonant frequency can be controlled by bias voltage. We can design voltage controlled oscillator using proposed ring type DGS resonator. Thus, due to its simple fabrication process and planar type, it is expected that the technique in this paper can be widely used for low phase noise oscillators for both MIC and MMIC applications.

Design of BPF Using A New DGS Resonator (새로운 DGS공진기를 이용한 대역통과 여파기의 설계)

  • Yoon Jang-Sik;Joung Myoung-Sub;Park Jun-Seok;Park Cheon-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • In this letter, we proposed a novel DGS (Defected Ground Structure) microstrip resonator. The proposed DGS resonator has the resonant and anti-resonant characteristic that is very similar to those of a SAW resonator or a FBAR. In order to confirm the validity of the proposed resonator, we designed and implemented bandpass fitters by using series ana parallel resonators.

Design of a Bandpass Filter using Two Layer Microstrip Structure (두 층 마이크로스트립 구조를 이용한 대역통과 여파기 설계)

  • 천동완;박정훈;신철재
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • The resonator using two layer microstrip structure was proposed and the bandpass filter was designed using this resonator in this paper. The proposed resonator structure is constructed by placing a U-shape of resonator in the first layer and then placing a broadside coupling strip in the second layer just above of the U-shape of resonator's edge part. Because these structure has various design parameters than general single layer coupled line structure, filter design is more flexible. In this paper, the narrow band filter was designed using multi-layer structure that had been applied to broadband filter because it's high coupling nature. The filter was designed to have 4MHz center frequency and 3 % fractional bandwidth, and finally confirmed that can be realizable narrow band filter by using multi-layer structure through fabrication and measurement.

Extracting Method of External Quality Factor(Qe) Using Phase Response (위상특성을 이용한 공진기의 외적 양호도(Qe) 추출 방법)

  • Park, Young-Bae;Kim, Gi-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2065-2071
    • /
    • 2011
  • The external quality factor ($Q_e$) is controlled by coupling condition between resonator and input/output ports in design of microwave filter. In this paper, we represent extracting method of external quality factor using phase response for resonator with input/output ports according to position of feed line from microstrip line resonator. The results regarding to position, coupling gap and line width for tapped line and coupled line structure are represented, and we got the exact $Q_e$ value from the this method. This results will be applied to coupled resonator filter design.

Low Phase Noise VCO Using Microstrip Square Open Loop Resonator and Tunable Negative Resistance (Microstrip Square Open Loop와 Tunable Negative Resistance를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Lee, Chong-Min;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1143-1149
    • /
    • 2006
  • The microstrip square open loop resonator has been employed to reduce the phase noise in VCO. The microstrip square open loop resonator has the large coupling coefficient value, which makes a high Q value, and has reduced the phase noise of VCO. To increase the tuning range of VCO, varactor diode has been connected at the tunable negative resistance in VCO. The output power and harmonic characteristics of VCO has been obtained 4.83 dBm and -28.83 dBc, respectively. The phase noise of VCO has been $-112.33{\sim}-116.16dBc/Hz$ @ 100 kHz in the tuning range, $5.735{\sim}5.845GHz$.

Studies on the Microstrip Bandpass Filter Using Stepped Impedance Resonator and the Wideband Microstrip Bandpass Filter (스텝 임피던스 공진기를 이용한 마이크로스트립 대역통과 필터와 광대역 마이크로스트립 대역통과 필터에 관한 연구)

  • 박봉근;박동철
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.10-16
    • /
    • 1991
  • A microstrip bandpass filter using stepped impedance resonators and tapped input / output is realized with Teflon substrate, whose center frequency is 3.5 GHz and fractional bandwidth is 20%. In order to realize a wider bandwidth of 30%, the Crystal's design method and the input / output tapping scheme are used. Another microstrip filter designed as mentioned above is realized with Epsilam-10 substrate. This case shows good agreement between the theoretical responses and the measured ones.

  • PDF