• Title/Summary/Keyword: Microstrip resonator

Search Result 225, Processing Time 0.02 seconds

A Numerically Efficient Full Wave Analysis of Circular Resonators Microbandes Stacked Involving Multimetallisations

  • Chebbara, F.;Fortaki, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.314-319
    • /
    • 2015
  • The conventional geometry of a plate microstrip resonator is made up of a single metallic patch, which is printed on a monolayer dielectric substrate. Its arrangement is simple and easy to make, but it is limited in its functional abilities. Many searches have been realized to improve the bandwidth and the gain of the microstrip resonators. Among the various configurations proposed in the open literature, the stacked geometry seems to be very promising. By appropriate design, it is able to provide the operation in dual frequency mode, wide bandwidth enough and high gain. The theoretical investigations of structures composed of two stacked anti-reflection coatings, enhanced metallic coatings are available in the literature, however, for the stacked configurations involving three metallic coatings or more, not to exact or approximate analysis was conducted due to the complexity of the structure.

Cross-Coupled Microstrip Combline Bandpass Filter Using Stepped-Impedance Resonators

  • Cho, Young-Ho;Choi, Seung-Un;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.190-194
    • /
    • 2007
  • In this paper, a cross-coupled microstrip combline bandpass filter using stepped-impedance resonators(SIRs) is proposed. In order to improve the selectivity as well as the insertion loss, the SIR configuration is used. The cross coupling is also introduced to enhance the selectivity. The improvement of the insertion loss is demonstrated not only by deriving the quality factor of the SIR but through the measured performances. Both the proposed and the conventional combline bandpass filter with 5 % of fractional bandwidth at 2 GHz were fabricated and tested. Compared to the conventional combline bandpass filter, the proposed one exhibits the improved selectivity as well as the lower insertion loss characteristics.

Effect of Loading Split-Ring Resonators in a Microstrip Antenna Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.120-122
    • /
    • 2015
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna (MSA) based on surface wave suppression. The back radiation of the MSA is significantly reduced by using the meandered ground plane edges and placing split-ring resonators (SRRs) in the middle of the meandered slots. By loading SRRs near the center of the meandered ground plane edges, some parts of the diffracted back-lobe power density can be reduced further. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 18 dB has been achieved experimentally for our proposed MSA.

Compact Planar Dual-Wideband Bandstop Filters with Cross Coupling and Open-Ended Stepped Impedance Resonators

  • Velidi, Vamsi Krishna;Sanyal, Subrata
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.148-150
    • /
    • 2010
  • This letter presents the design of a compact bandstop filter (BSF) operating at two frequencies. The proposed BSF consists of open-ended stepped impedance resonators (OSIR) and an end-shorted parallel-coupled microstrip line (E-PCML). The OSIRs are used to achieve the impedance-controlled stopband positions. The wide BSF bandwidths are achieved through enhanced coupling of the E-PCML. Explicit design guidelines are derived using a lossless transmission line model. To validate theoretical predictions, a prototype dual-band BSF operating at 900 MHz and 2,100 MHz with fractional bandwidths of 72% and 36%, respectively, is implemented in microstrip.

Wideband and tow Phase Noise Voltage Controlled Oscillator Using a Broadside Coupled Microstrip Resonator (상하 결합 마이크로스트립 공진기를 이용한 광대역 저 위상 잡음 전압제어발진기)

  • Moon, Seong-Mo;Lee, Moon-Que
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.46-52
    • /
    • 2009
  • In this paper, a novel VCO (Voltage Controlled Oscillator) structure is proposed to achieve the characteristic of low phase noise and a wide frequency tuning range. The proposed scheme adopts an impedance transforming technique to change a series resonance into a parallel resonance for maximizing the susceptance slope parameter. The manufactured VCO shows a frequency tuning bandwidth of 600MHz from 10.1GHz to 10.7GHz with a tuning voltage varying from 0 to 9V, an excellent phase noise below -119dBc/Hz@1MHz offset. The harmonic suppression is measured above 28dB.

  • PDF

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pade Approximation (FDTD법과 Pade 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • 오순수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.396-396
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is $TE_{01{\delta}}$ mode.

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pad Approximation (FDTD 법과 Pad 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • O, Sun-Su;Yun, Jung-Han;Lee, Seong-Mo;Park, Hyo-Dal
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.36-43
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is TE$_{01{\delta}}$ mode.

  • PDF

Development of a Energy-saving LED module Using K-band Microwave Motion Detecting Sensor (K대역 마이크로파 움직임 감지 센서를 이용한 에너지 절감형 LED 모듈 개발)

  • Kim, Howoon;Woo, Dong Sik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.446-452
    • /
    • 2020
  • In this paper, we propose a energy-saving LED module using K-band microwave motion detecting sensor. To oscillate K-band microwave signal, An oscillator using a hairpin-type microstrip resonator was designed to increase stability and make fabrication easier. To radiate the microwave signal, a two-channel(TX/RX) patch antenna arrays was developed. Wilkinson power divider and ring hybrid mixer were developed and applied to obtain Doppler shift from the received signal. Shield cans were installed to protect the stability of the signals and unwanted external noise. The proposed motion detection sensor was mounted on a demonstration LED module and the energy saving performance through pre-test was verified.

Formation of Fine Line and Series Gap Resonator Using the Photoimageable Thick Film Technology (후막 광식각 기술을 이용한 미세라인 및 Series Gap Resonator의 구현)

  • 박성대;이영신;조현민;이우성;박종철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.69-75
    • /
    • 2001
  • Photoimageable thick film technology is a new technology in that the lithography process such as exposure and development is applied to the conventional thick film process. Line resolution of 25 $\mu\textrm{m}$ width and 25 $\mu\textrm{m}$ space could be obtained by laminating green sheet, printing photoimageable Ag paste, exposing the test patterns, developing, and co-firing. In case of using the alumina substrate, 20 $\mu\textrm{m}$ fine line could be also obtained by similar process. Test results showed that exposing power density and developing time were the most important processing parameters for the fine line formation. Microstrip and series gap resonators with well-defined line morphology and good transmission characteristics in high frequency were formed by this new technology, and thereby dielectric constant and loss of test substrate were calculated.

  • PDF

Wireless Power Transfer System

  • Arai, Hiroyuki
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.143-151
    • /
    • 2011
  • This paper presents a survey of recent wireless power transfer systems. The issue of wireless power transfer is to achieve a highly efficient system with small positioning errors of the facilities setting. Several theories have been presented to obtain precise system design. This paper presents a summary of design theory for short range power transfer systems and detailed formulations based on a circuit model and an array of infinitesimal dipoles. In addition to these theories, this paper introduces a coil array scheme for improving the efficiency for off axis coils. In the microwave range, tightly coupled resonators provide a highly efficient power transfer system. This paper present san-overlay resonator array consisting of half wavelength microstrip line resonators on the substrate with electromagnetically coupled parasitic elements placed above the bottom resonators. The tight couplings between the waveguide and the load resonator give strong power transmission and achieve a highly efficient system, and enables a contact-less power transfer railroad. Its basic theory and a demonstration of a toy vehicle operating with this system are presented. In the last topic of this paper, harmonic suppression from the rectenna is discussed with respect to acircular microstrip antenna with slits and stubs.