• Title/Summary/Keyword: Microstrip Coupled Line

Search Result 148, Processing Time 0.02 seconds

Design of a Microstrip Bandpass Filter Using Step Impedance Resonators and Tapped Input/Output (스텝 인피던스 공전기와 입출력 텝핑을 이용한 마이크로 스트립 대역통과 필터의 설계)

  • 박동철;박정일;이병남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1728-1735
    • /
    • 1989
  • A design procedure for microstrip bandpass filters using step impedance resonators (SIR's) and tapped input/output to a conventional parallel coupled line bandpass filter is presented. The filter configuration consisting of both half-wavelength and SIR's suppreses to spurious resonance response near the second harmonics, while tapping techniques offer benefit in situations where the impractical. The measured frequency responses of the designed filter are in close agreement with the computed responses.

  • PDF

A Study on Crosstalk in High Speed Digital Signal Transmission Line (고속 디지털 신호 전송선로에서의 Crosstalk 에 관한 연구)

  • 김세영;장상건;남상식;박항구;신연강
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.16-25
    • /
    • 1994
  • The prediction of crosstalk in one of important problems in estimating the EMC of a system for high speed digital signal transmission. Crosstalk curves are shown in terms of characteristic impedance of lines spacing between lines and rise time of pulse by using general multiple coupled transmission line equation and harmonic-balance method. The coupled symmetrical two-line on dielectric material epoxy-glass FR 4(${\varepsilon}_r$), is fabricated to measure crosstalk occuring at the near end and far end of the passive line. The inter-line is inserted to reduce crosstalk between two microstrip lines. The simulation results and the measurement results are shown and found to be very close.

  • PDF

Analysis of Rectangular Microstrip Patch Antennas with the Multilayered Structure and the Electromagnetically Coupled Feed Structure (다층구조와 전자장결합 급전구조를 갖는 사각형 마이크로스트립 패치안테나의 해석)

  • 정문희;남상욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.18-25
    • /
    • 1994
  • In this papaer, the input impedance of the rectangular microstrip patch antennas with the multilayered structure is analysed by using the moment method technique in the spectral domain. The analysis is carried out for two different feeding structures : directfeeding structure and electromagnetic-feeding structure. In order to obtain the accurate input impedance, the current distribution on the microstrip feed line is modeled by the quasi-TEM travelling wave and the PWS(piecewise sinusoidal) mode. The input impedances of the designed microstrip antennas are measured and compared with the calculation. which shows a good agreement.

  • PDF

Design of miniaturized power divider multiple coupled line on RFIC/MMIC for application to vessel wireless communication components (선박 무선통신소자에의 응용을 위한 다중결합 선로를 이용한 RFIC/MMIC용 초소형 전력분배기의 설계)

  • Lee, Dong-Hwan;Yun, Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.401-405
    • /
    • 2005
  • This paper proposed a miniaturization passive element employing the multiple microstrip line. As a result of this method, we realized the transmission line miniaturized. The applying structure designed and evaluated a power divider on GaAS MMIC circuit. It draws a plan in a center Frequency as the observation could do good characteristic.

  • PDF

Extraction of Design Parameters for Re-entrant Mode Microstrip Directional Coupler with High Directivity Using FE Calculation (유한요소계산을 이용한 고지향성을 갖는 재-진입모드 마이크로스트립 방향성 결합기의 설계 파라미터 추출)

  • Kim, Hyeong-Seok;Park, Jun-Seok;Ahn, Dal
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.238-242
    • /
    • 2001
  • In this paper, we extracted design parameters for re-entrant mode microstrip directional coupler using FE(finite element) calculations. The microstrip directional coupler suffers from a poor directivity due to effect of the inhomogeneous dielectric including both dielectric substrate and air in microstrip transmission lines. Thus, the phase velocity of even mode is not equal to that of odd mode. In order to improve the directivity of microstrip directional coupler, a novel re-entrant mode microstrip directional coupler was employed. In microstrip configuration, the high directivity can be reached by matching the even- and odd-mode effective phase velocities. Through the values of capacitance obtained from 2-dimensional FE calculations, the phase velocities for each mode and the design parameter were extracted for the proposed parallel coupled-line configuration. Based on the extracted design parameter with phase matching condition, we designed and fabricated a 30dB directional coupler at 0.85GHz. Experimental results show good performance with excellent, isolation and directivity.

  • PDF

A spectral domain analysis of microstrip lines using a residue theorem (유수정리를 이용한 마이크로스트립 선로의 스펙트럼 영역 해석)

  • 문병귀;진경수;박병우
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.8-15
    • /
    • 1998
  • An analysis of the microstripline is started as an assumption of the axial & transveral current distribution. Applying the boundary conditions to the scalar wave equations of a electric & magnetic potential, the two simultaneous coupled integral equations are produced. The electronmagnetic fields in microstrip line can be obtained by solving these two coupled integral equaltion. In general, either a numerical analysis method or a Galerkin method was used to solve them. In this paper, a residue theorem is proposed to solve them. The electromagnetic fields are expressed as integral equations for LSE and LSM mode in the spectral domain. Applying a residue theorem to the Fourier transformed equation and Fourier inverse transformed equation which is necessary for interchanging the space domain and the spectral domain, the electromagnetic fields are expressed as algebraic equations whichare relatively easier to handle. the distributions of the electromagnetic field are shown at the range of -5w/2.leq.x.leq.5w/2, 0.lep.y.leq.4h for z=0. It agrees well with the results of the Quasi-TEM mode analysis.

  • PDF

The radiation pattern calculation of the electromagnetically coupled microstrip dipole array antenna using the FDTD method (FDTD 방법을 이용한 전자기결합 마이크로스트립 다이폴 배열안테나의 복사패턴 계산)

  • 손영수;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1459-1467
    • /
    • 1997
  • The current on the thin planar structure as an element of the transversely fed electromagnetically coupled(EMC) microstrip dipole array antenna is obtained by using the integral forms of the finite difference time domain(FDTD) method. This method was applied to calculating the optimum current distribution (Doplh-Tchebyscheff distribution) of each dipole element on the feed line as a function of their offset positions for the narrow main beam width and the side beam level below -20 dB. The current on each dipole substitutes for the electric and magnetic current densities on the virtual surface of the FDTD calculation to express the far field intensity, the calculation time and the computer memeory can be reduced to about 80% and 1.3 Mbyte, respectively. The calculated radiation patterns are compared to the measured values and these are in good agreement.

  • PDF

Design of an Aperture-Coupled Dual Beam Microstrip Array Antenna (개구면 결합 급전 방식의 이중 빔 마이크로스트립 배열 안테나의 설계)

  • 이영주;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.738-746
    • /
    • 1999
  • In this paper, a microstrip $18\times2$ dual beam array antenna is designed at 10 GHz. The radiating element is an aperture-coupled patch, and it is analyzed by the transmission line model. The feed is a tapered parallel-series type to reduce the side lobe level. To obtain dual beam at $\pm45^{\circ}$, The difference in phase excitation between the elements is $180^{\circ}$. In conclusion, the side lobe level is 25 dB, and the beam width $8^{\circ}$with two main lobes at $\pm44.5^{\circ}$.

  • PDF

An Aperture-coupled Microstrip Shaped-beam Array antenna for the PCS Basestation. (개구 결합 구조를 갖는 PCS 기지국용 마이크로스트립 정형 빔 배열 안테나)

  • 여운식;김광조;강승택;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.6
    • /
    • pp.363-644
    • /
    • 1997
  • This paper presents the design and fabrication of a shaped-beam array antenna which will be used for a PCS basestation using structure that is coupled to a microstrip line by an aperture on the interening ground plane. The shaped-beam pattern is obtained by an antenna synthesis method. An array antenna considering the mutual coupling between array elements patches) and a feeding network are designed by CAD tools. The feeding network is designed by using the Wilkinson power divider to obtain the optimized shaped-beam. The designed results are compared with the measured data.

  • PDF

Extraction of Design Parameters for Planar Coupled Lines (유한 요소 해석에 의한 평면형 결합 선로의 설계 파라미터 추출)

  • Lee, Pil-Yong;Park, Jun-Seok;Ahn, Dal;Kim, Hysons-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2213-2215
    • /
    • 2000
  • In this paper we implemented a novel re-entrant mode microstrip directional coupler for realizing the high directivity characteristic using finite element (FE) analysis. In microstrip configuration, the high directivity can be reached by matching the even- and odd-mode effective phase velocities. Through the values of capacitance obtained from 2-dimensional finite element(FE) analysis, the phase velocities for each mode and the design parameter were extracted for the proposed coupled-line configuration. Based on the extracted design parameter with phase matching condition we designed and fabricated 30dB directional coupler at 850MHz. Experimental results show good performance with excellent isolation.

  • PDF