• Title/Summary/Keyword: Microsolvation

Search Result 4, Processing Time 0.017 seconds

Effects of Microsolvating Water on the Stability of Zwitterionic vs. Canonical Diglycine

  • Kim, Ju-Young;Won, Gang-Yeon;Lee, Sungyul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.798-804
    • /
    • 2014
  • We present calculations for diglycine - $(H_2O)_n$ (n = 0-3) to examine the effects of microsolvating water on the relative stability of the zwitterionic vs. canonical forms of the dipeptide. We calculate the structures, energies and Gibbs free energies of the conformers at wB97XD/6-311++G** and MP2/aug-cc-pvdz levels of theory level of theory. We predict that microsolvation by up to three water molecules does not give thermodynamic stability of the zwitterion relative to the canonical forms. Our calculations also suggest that zwitterionic diglycine - $(H_2O)_3$ is not stable kinetically in low temperature gas phase environment.

Effects of Microsolvation on the Stability of Zwitterionic Valine

  • Kim, Ju-Young;Won, Gang-Yeon;Lee, Sungyul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3797-3804
    • /
    • 2012
  • We present calculations for valine (Val) - $(H_2O)_n$ (n = 0-5) to examine the effects of microsolvating water on the relative stability of the zwitterionic vs. canonical forms of Val. We calculate the structures, energies and Gibbs free energies of the conformers at B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p) and MP2/aug-cc-pvdz level of theory. We find that five water molecules are needed to stabilize the zwitterionic form of Val. By calculating the barriers of the canonical ${\leftrightarrow}$ zwitterionic pathways of Val - $(H_2O)_5$ conformers, we suggest that both forms of Val - $(H_2O)_5$ may be observed in low temperature gas phase.

Structure and Stability of γ-Aminobutyric acid-(H2O)n (n = 0-5) Clusters: Zwitterionic vs. Canonical forms

  • Kim, Ju-Young;Schermann, Jean Pierre;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.59-63
    • /
    • 2010
  • Calculations are presented for the $\gamma$-aminobutyric acid-$(H_2O)_n$ (n = 0-5) clusters in both canonical and zwitterionic forms. We examine the effects of microsolvation on the structures and transformation between the canonical and zwitterionic forms. The canonical forms are predicted to be more stable for n = 0-4. With five microsolvating water molecules, the two forms of $\gamma$-aminobutyric acid become quasidegenerate, with the energies of zwitterionic forms slightly (by 1 - 3 kcal/mol) higher. The lowest energy zwitterionic conformer of $\gamma$-aminobutyric acid-$(H_2O)_5$ cluster is calculated to isomerize to canonical form through a barrier-less proton transfer process and is thus predicted to be kinetically unstable. Therefore, we predict that the canonical conformers of $\gamma$-aminobutyric acid should be observed predominantly in the gas phase at low temperature in presence of up to five water molecules.

Computational Study of Proline - Water Cluster

  • Lee, Kyung-Min;Park, Sung-Woo;Jeon, In-Sun;Lee, Bo-Ra;Ahn, Doo-Sik;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.909-912
    • /
    • 2005
  • Calculations are presented for the structures of various conformers of the bare proline and proline –($H_2O$) cluster. The effects of hydrogen bonding with a water molecule on the relative stability of the low energy conformers of proline are examined. Microsolvation by a water molecule is predicted to affect the relative stability, structures and the infrared frequencies of the conformers to a large degree.