• Title/Summary/Keyword: Microscopic tension strength

Search Result 8, Processing Time 0.023 seconds

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Influence of Rock Inhomogeneity on the Dynamic Tensile Strength of Rock (암석의 동적 인장강도에 미치는 불균질성의 영향)

  • Cho, Sang-Ho;Yang, Hyung-Sik;Katsuhiko Kaneko
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.180-186
    • /
    • 2003
  • The fracture processes under dynamic loading in tension were simulated using a proposed numerical approach and analyzed to determine dynamic tensile strength. The dynamic tensile strength and the scatter of the strength data decreased with increasing uniformity coefficients. The differences of static and dynamic tensile strength were due to the stress concentrations and redistribution mechanisms in the rock specimen. Although there were different mechanisms for the static and dynamic fracture processes, the static and dynamic tensile strengths were close to the mean microscopic tensile strength at high values of the uniformity coefficient. This paper shows that the rock inhomogeneity has an effect on dynamic tensile strength and is a factor that contributes to the different specimen strengths under dynamic and static loading conditions.

Plasticity Model for Directionality of Concrete Crack Damages (콘크리트 균열 손상의 방향성을 고려한 다중파괴기준 소성 모델)

  • Kim, Jae-Yo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.655-664
    • /
    • 2007
  • The inherent characteristic of concrete tensile cracks, directional nonlocal crack damage, causes so-called rotating tensile crack damage and softening of compressive strength. In the present study, a plasticity model was developed to describe the behavior of reinforced concrete planar members In tension-compression. To describe the effect of directional nonlocal crack damage, the concept of microplane model was combined with the plasticity model. Unlike existing models, in the proposed model, softening of compressive strength as well as the tensile crack damage were defined by the directional nonlocal crack damage. Once a tensile cracking occurs, the microplanes of concrete are affected by the nonlocal crack damage. In the microplanes, microscopic tension and compression failure surfaces are calculated. By integrating the microscopic failure surfaces, the macroscopic failure surface is calculated. The proposed model was implemented to finite element analysis, and it was verified by comparisons with the results of existing shear panel tests.

Determining Parameters of Dynamic Fracture Process Analysis(DFPA) Code to Simulate Radial Tensile Cracks in Limestone Blast (석회암 내 방사상 발파균열을 예측하기 위한 동적파괴과정 해석법의 입력물성 결정법에 관한 연구)

  • Kim, Hyon-Soo;Kang, Hyeong-Min;Jung, Sang-Sun;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • Recently, complaints or environmental problems caused by the noise and dust generated from crusher of the mine and quarry are emerging. Therefore mining facilities such as crushers and mills have been installed in an underground. In order to facilitate crusher equipments in the underground, excavation of large space is required and then the stability of the large space underground structure is an important issue. In this study, the blast experiments, which use a block of the limestone, are performed. Based on the blast experiments, the numerical model was prepared and simulated using dynamic fracture process analysis code(DFPA) with considering the rising time of applied borehole pressure and microscopic tensile strength variation. Comparing the non-dimensional crack length and no-dimensional tensile strength obtained from blast experiments and numerical analyses, the input parameters of DFPA code for predicting a radial tensile crack in limestone blasting were determined.

Variation of Axial Tension-Compression Fatigue Characteristics by UNSM on Ti-6Al-4V (Ti-6Al-4V재의 UNSM처리에 의한 축인장압축피로특성변화)

  • Suh, Chang-Min;Cho, Sung-Am;Pyoun, Young-Sik;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • The present study makes three original contributions to nanoskinned Ti-6Al-4V materials. The nanoskins were fabricated on Ti-6Al-4V material using various surface treatments: deep rolling (DR), laser shot peening (LSP), and ultrasonic nanocrystal surface modification (UNSM). These surface treatments are newly developed techniques and are becoming more popular in industrial fields. A fatigue strength comparison at up to 106 cycles was conducted on these nanoskinned Ti-6Al-4V materials. Fatigue tests were carried out using MTS under axial loading tension-compression fatigue (R = -1, RT, 5 Hz, sinusoidal wave). The analysis of the crack initiation patterns in the nanoskinned Ti-6Al-4V materials found an interior originating crack pattern and surface originating crack type. Microscopic observation was mainly used to investigate the fatigue fractured sites. These surface modification techniques have been widely adopted, primarily because of the robust grade of their mechanical properties. These are mainly the result of the formation of a large-scale, deep, and useful compressive residual stress, the formation of nanocrystals by the severe plastic deformation (SPD) at the subsurface layer, and the increase in surface hardness.

The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel (STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향)

  • Lee, Hyun-Seung;Sin, Hyung-Ju;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Strength Properties of Old Korean Larch Pile (고(古)부재 잎갈나무 말뚝의 재질 특성)

  • Hwang, Kweonhwan;Park, Byung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.23-30
    • /
    • 2007
  • Round piles of Korean larch were excavated from the foundation of ex-Chosunchongdokbu (ex-Chosun Governer-General Building), which was constructed in 1916 and dismantled later in 1996. By the record (Huh, 1996), the Korean larch logs were logged from the Yalu river area near Mt. Baekdu in North Korea. At present, however, Korean larch is not so popular in South Korea. The latewood ratio profiles and strength properties (longitudinal compression, shear, longitudinal tensile, and bending) were obtained. The ratio of latewood from pith to bark increased up to 25 years, and then it showed constant tendency at 40% with some variances. From the microscopic observation, however, the latewood ratio decreased from the heartwood to the sapwood. Compression strength was greater and bending strength was a little lower than the previous reports (references 13~15), which might be attributed to the strength reduction of old structural members by aging or damage in the compression specimens than the bending ones. The flat-grained specimens for the shear and tension test showed higher coefficient of variation (COV) than the edge-grained ones. For the better comparison of results, in case of shear and tensile strength tests, the strength values of the edge-grained specimens were thought to be adopted rather than those of flat-grained ones.