• 제목/요약/키워드: Microscopic porous

검색결과 47건 처리시간 0.023초

미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법 (A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method)

  • 이상혁;김주한;이나리;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

수치해석을 위한 변형된 난류 다공성 모델링 (A Modified Turbulent Porous Modeling for Numerical Analysis)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.875-882
    • /
    • 2002
  • The modeling for turbulent flow through a porous media has not been confirmed because of a undetermined constant which appears in the governing equations. In present study, the turbulent porous modeling based on the local thermal equilibrium has been extended to the turbulent clear flow. A undetermined constant is also suggested by microscopic analysis. The microscopic analysis is performed in the flat tube with micro-channels, and it confirms that the undetermined constant is 0.99. It is shown that the results of the macroscopic analysis using confirmed constant agree well with those of the microscopic analysis with a maximum error of 3.5%.

판형 열교환기의 전열판 개수에 따른 유량 분배 특성에 대한 수치해석 (A NUMERICAL STUDY ON THE CHARACTERISTIC OF FLOW DISTRIBUTION IN THE CHANNEL OF PLATE HEAT EXCHANGER FOR VARIOUS NUMBER OF CHANNELS)

  • 이나리;정재혁;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.129-134
    • /
    • 2009
  • In the present study, the characteristic of flow distribution in the channel of a plate heat exchanger is investigated numerically. In order to accomplish the efficient and fast analyses of the flow characteristics in the channel, a semi-microscopic analysis has been performed using a porous media model. For semi-microscopic analysis using porous media, the flow resistance coefficients are obtained through the result of pressure drop in the experimental data. The results showed that the variation of mass flow rate, geometry and chevron angle strongly depend on the flow distribution in the channel. Particularly, the chevron angle is most important factor for uniform flow distribution.

  • PDF

분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(1부 : 균질화법 해석) (Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1 : homogenization method))

  • 오진원;백성민;금영탁
    • 한국결정성장학회지
    • /
    • 제14권3호
    • /
    • pp.115-122
    • /
    • 2004
  • 다공성 물질이 건조될 때 입자는 겔 상태의 그물망 구조를 갖는다. 따라서 건조공정 중 발생하는 잔류응력을 정확하게 해석하기 위해서는 공극률과 공극형상에 따른 물성을 알아야 한다. 본 연구에서는 균질화법으로 원형과 십자형의 공극을 갖는 미시적인 겔구조로부터 공극률에 따른 재료의 탄성특성을 예측하고. 다공성 세라믹 애자의 건조공정을 유한요소 해석하였다. 해석 결과, 변형 형상과 온도, 습도 분포는 공극을 고려하지 않은 해석과 유사하지만 잔류응력 값은 큰 차이가 있음을 알 수 있었다.

컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구 (A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System)

  • 임수빈
    • 한국수처리학회지
    • /
    • 제26권6호
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

포러스콘크리트의 해수정화특성에 관한 실험적 연구 (A Study on the Sea-water Purification Properties of Porous Concrete)

  • 서대석;박승범;이준;송재립;김정희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.649-652
    • /
    • 2006
  • This paper describe the performance of seawater purification, to which living organisms can adapt, and the physical properties of porous concrete with continuous void. Although conventional concrete has been regarded as a destroyer of nature, seawater and air can pass freely through concrete when it is made porous by forming continuous void. This not only enables plants to vegetables, but also makes it possible for microscopic animals and plants, including bacteria, to attach to and inhabit uneven surface as well as internal voids when the concrete is provided in a natural seawater area or seawater side area. As a result, porous concrete using recycled aggregate improved the performance of seawater purification. In this study, The performance of seawater purification of porous concrete using recycled aggregate analyzed by T-P, T-N.

  • PDF

재생골재를 사용한 포러스 콘크리트의 수질정화 특성에 관한 실험적 연구 (An Experimental Study on Water-Purification Properties of Porous Concrete Utilizing Recycled Aggregate)

  • 김정환;조광연;조청휘;이봉춘;박승범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.925-928
    • /
    • 2001
  • Recently great efforts and investment have been made in order to achieve economical production by applying new methods like minimization of man-Power into construction field. This paper describe the performance of water purification, to which living organisms can adapt, and the physical properties of porous concrete with continuous voids. Although conventional concrete has been regarded as a destroyer of nature, water and air can pass freely through concrete when it is made porous by forming continuous voids. this not only enables plants to vegetables, but also makes it possible for microscopic animals and plants, including bacteria, to attach to and inhabit uneven surface as well as internal voids when the concrete is provided in a natural water area or waterside area. As a result, Porous concrete using recycled aggregate improved the performance of water purification.

  • PDF

Simvastatin loaded porous poly(lactide-co-glycolide)(PLGA) microspheres as delivery systems strategies for injuring tissue and invitro study

  • Bao, Trinh-Quang;Kim, Yang-Hee;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.38.2-38.2
    • /
    • 2009
  • Regeration of natural tissuesor to create biological substitutes for defective or lost tissues and organs through the use of cells. In addition to cells and their porous, drugs are required to promote tissue regeneration. Therefore, the present studies were prepared using simvastatim loaded porous poly(lactide-co-glycolide) (PLGA) by double emulsion solvent evaporation water-in-oil-in-water technique (W/O/W) as drug delivery system strategies for injuring tissue. The resulting microspheres were evaluated for morphology, particle size, encapsulation efficiency, degradation of PLGA microspheres in vitro drug release and in vitro cell viability. Scanning electronic microscopic (SEM) showed that the porosities of the particles was changed by experimental conditions and cultured cells were attached well on porous microspheres surface. The X-ray diffraction (XRD) and differential scanning calometry (DSC) analysis indicate thatsimvastatim was highly dipersed in the microsphere at amorphousstate.

  • PDF

티타늄 다공체에 담지된 Camphene과 화학기상증착법을 이용한 CNT 합성 (Synthesis of CNT on a Camphene Impregnated Titanium Porous Body by Thermal Chemical Vapor Deposition)

  • 김호규;최혜림;변종민;석명진;오승탁;김영도
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.122-128
    • /
    • 2015
  • In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane($CH_4$) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.