• Title/Summary/Keyword: Microprocessor Control Circuit

Search Result 138, Processing Time 0.04 seconds

Development of a Digital Motor Control Center (디지틀형 MOTOR CONTROL CENTER 개발)

  • Byun, Young-Bok;Joe, Kee-Yeon;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.563-566
    • /
    • 1989
  • Drive malfunction take many forms and every possible one must be protected against. Until recently a separate analog device was needed for each type of malfunction. In this approach to simplified, more reliable motor-circuit protection and control, a microprocessor's digital controller for motor control center simultaneously examine most of the possible sources of circuit trouble and has more efficent functions (sequence control,display) than the conventional motor control center. The result of standard surge tests provided a realistic evaluation of the surge withstand capability of equipment.

  • PDF

A Study on the Linear Encoder for the high performance Oil Off Angle control of SRM (SRM의 고성능 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구)

  • 이동희;박성준;이명재;한성현;백운보;이희섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.190-198
    • /
    • 2002
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, witch are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

A Study on the Design of a Control Circuit for Three-Phase Full Bridge Converter Using Microprocessor (마이크로프로세서를 이용한 3상 브리지 콘버터의 제어회로 설계에 관한 연구)

  • Noh, C.J.;Kim, Y.S.;Kim, Y.G.;Yu, J.Y.;Ryu, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.985-987
    • /
    • 1992
  • The three-phase full(6-pulse) bridge controlled rectifier is one of the most widely used types of solid-state converters in DC drive applications for higher performance. In most of the previous designs gate control circuits of the converter have been designed with analog method, whitch can be easily affected by noise. In this study microprocessor and pheripal LSIs are used for eliminating these problems and successful results have been obtained.

  • PDF

Study on the Exclusive SRM Encoder for Angle Control in Wide Region (광범위한 여자각 제어가 가능한 SRM전용 엔코더 개발)

  • Park, Sung-Jun;Kim, Jong-Dal;Shon, Mu-Heon;Kim, Gyu-Seob;Lee, Yil-Chun;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.898-900
    • /
    • 2001
  • In general, the accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, which are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple analog type switching logic circuit is also presented in this paper.

  • PDF

A Study on the Driving Characteristics of Delta Inverter Driving Induction Motor Control System Based on the Microprocessor (마이크로 프로세서에 의한 델타인버어터 구동 유도전동기의 운전특성에 관한 연구)

  • Yoon, Byung-Do;Lee, Seung-Han
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.527-529
    • /
    • 1987
  • This paper presents a study on the driving characteristics or delta inverter driving induction motor control systems based on the microprocessor. Delta inverter is a novel circuit which uses only three power transistor. Requiring approximately hair the components or a conventional bridge inverter it therefore has a merit of coat and Simplicity. The basic operating principles of the delta inverter and conventional bridge inverter are argued, using resistive and inductive load. Sinusoidal PWM method uses to reduce the harmonic components of its output waveform to acceptable levels.

  • PDF

A study about the digital control for the forward converter with synchronous rectifier (동기정류기형 포워드 컨버터의 디지털 제어에 관한 연구)

  • Ka, Dong-Hoon;Kim, Il-Nam;Park, Jong-Sung;Ahn, Tae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.29-31
    • /
    • 2007
  • This is experimental result which is reported with use the dsPIC30F2020 16-Bit SMPS microprocessor of MicroChip company which composes a digital control circuit and it applies in switched-mode power supply unit. The basic topology consist of the synchronous rectifier in a two transistor forward converter. In a experiment, it is used from microprocessor to do with A/D conversion and it is embodied with PID controls in order to detect a over-current, over-voltage, over-temperature and output voltage.

  • PDF

Development of Engineering Model for the Thruster Control Unit and Simulation system of the Reaction Control System (냉가스 추력기 시스템용 EM 제어기 및 점검 시스템 개발)

  • Jeon, Sang-Un;Kim, Ji-Hun;Jeong, Ho-Rak;Choe, Hyeong-Don
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.188-194
    • /
    • 2006
  • This paper deals with the development of Engineering Model for the TCU( Thruster Control Unit) and simulation system of the reaction control system using cold gas. TCU communicates with TLM(Telemetry) and ground control console so that it transmits monitoring data of pressures and temperatures for reaction control system. The cpu/communication board performs MIL-STD-1553B communication, RS-422 communication, data input/output processing and program loading to EEPROM. We applied Intel 80386DX Microprocessor, 256Kbytes EEPROM and 256Kbytes SRAM for program storage and execution. Also, we developed the direct access interface circuit to EEPROM and simulation system for TCU.

  • PDF

A study on the improvement of communiation circuit for DC chopper (DC chopper용 전류회로 개선에 관한 연구)

  • 노창주;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.57-68
    • /
    • 1989
  • This paper treats the analytical and experimental studies on the improvement of commutating circuit for the speed control of DC motor. A simple circuit composed of R, L and C elements is proposed here for switching off power SCR carrying the load current. The real important in this chopper circuit is to determine the reasonable values of commutating circuit constants. In this paper, the reasonable values of the commutating circuit constants are basically determined on a view point of commutating performances in the given circuit model and must satisfy the following conditions. The first, the peak commutating current should be larger than the anticipated maximum load current. The second, the circuit turn-off time (tc) must be longer than the SCR turn-off time (tq). The third, the resistor should be enough large to permit the current to be neglected in the analysis of the commutation circuit, as well as be enough small to permit to charge the capacity voltage (Ec) to the half the value of source voltage (E) before the next communication cycle is initiated. The last, the period of chopping signal must be the least possible multiple of the damping vibration period of commutating circuit. The improved chopper circuit used in the experiment under unloaded condition was composed to meet the reasonable conditions mentioned above, and a successful commuting performance was achieved without failure. Several types of microprocessor having a different value of CPU speed individually have been applied to the experiment under the loaded conditions. Also it shows that the faster the speed of CPU is, the more stable the commutation turns out.

  • PDF

Digital firing control for high power thyristor converter (대용량 전력변환용 사이리스터 디지털 점호제어)

  • Lee Y.B.;Kim J.M.;Lim I.H.;Ryu H.S.;Song S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.565-568
    • /
    • 2003
  • The conventional analog-based firing circuit can be implemented by comparing a linearly decreasing periodic sawtooth waveform synchronized to the ac line, with a voltage corresponding to the desired converter delay angle. This circuit requires a large number of components (resistance and capacitor) and careful adjustment of the synchronization circuity In this paper a novel firing circuit is proposed for thyristor switch is elements. The proposed circuit is implemented on the basis of the analog cosine method using FPGA and microprocessor.

  • PDF

A Study on High Efficiency Inverter Ballast Using Microprocessor (마이크로프로세서를 사용한 고효율 인버터 안정기에 관한 연구)

  • 정재륜
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.88-94
    • /
    • 1999
  • This paper describes the high efficiency inverter ballast circuit using very cheap microprocessor, which has been developed by the author. A variety of soft-switching techniques have been proposed to reduce the switching losses and EMI publems that accur with higher switching frequencies in switched inverter ballast 1be inverter ballast circuit, which employs a temperature sensing circuits has been also proposed to improve starting performance of the fluorescent lamps. That is, the inverter ballast circuit, which employs a soft-starting circuits and soft-switching techniques to implement the power factoc correcticn and to mitigate of power-loss and iocrease a life time of the fluorescent lamps, has become an attractive performance forballasting the fluorescent lamps. In this paper, the operation and the control of the inverter ballast are described in detail and experimental results are presented. As the experimental results, when enviroment temperatture is at TEX>$-40^{\circ}C$, the inverter ballast circuit has low THD(4.8%) of the input current and large power factor(98%) of the lamp current. The proposed improved ballast circuit awears to be a good performance for ballasting fluorescent lamps. lamps.

  • PDF