• Title/Summary/Keyword: Microporous surface

Search Result 109, Processing Time 0.03 seconds

Mechanisms of gas permeation through microporous membranes - A review

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.1-13
    • /
    • 1995
  • A review is presented for various gas tranport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the inateraction between gas molecules and the pore walls. For microporous membranes whose pores are small and the intenal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, them the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Hydrogen Storage Properties of Microporous Carbon Nitride Spheres (구형의 질화탄소 마이크로세공체의 수소저장 특성)

  • Kim, Se-Yun;Suh, Won-Hyuk;Choi, Jung-Hoon;Yi, Yoo-Soo;Lee, Sung-Keun;Stucky, Galen D.;Kang, Jeung-Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.744-744
    • /
    • 2009
  • The development of safe and suitable hydrogen storage materials is one of key issues for commercializing hydrogen as an energy carrier. Carbon based materials have been investigated for many years to store hydrogen by the adsorption of the gas on the surface of the carbon structure. Recently, it is reported that carbon nitride nanobells have high hydrogen storage capacity since the nitrogen atom plays an important role on attracting hydrogen molecules. Here we report carbon nitride microporous spheres (CNMS) which have the maximum surface area of 995.3 $m^2/g$. Melamine-Formaldehyde resin is the source of carbon and nitrogen in CNMS. Most of the CNMS pores have diameters in the range of 6 to 8 A which could give a penetration energy barrier to a certain molecule. In addition, the maximum hydrogen storage capacities of carbon nitride spheres are 1.9 wt% under 77 K and 1 atm.

  • PDF

Effect of structure of PVDF membranes on the performance of membrane distillation

  • Chang, Hsu-Hsien;Tsai, Chih-Hao;Wei, Hao-Cheng;Cheng, Liao-Ping
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2014
  • A series of microporous PVDF membranes were prepared by isothermal immersionprecipitation of PVDF/TEP casting dopes in both soft and harsh coagulation baths. Morphologies of the membranes' top surfaces were found to depend strongly on the bath strength, which could be controlled by the TEP content in the bath. By changing the bath gradually from pure water to 70% TEP, the top surface evolved from a dense skin-like (asymmetric) to a totally open porous morphology (symmetric). The latter structure could similarly be obtained by precipitation of the same dope in an alcoholic bath, e.g., 1-butanol. Membrane distillation processes to desalt sodium chloride aqueous solutions were conducted using various prepared membranes and two commercial microporous membranes, PTFE (Toyo, Japan, code: J020A330R) and PVDF (GE, USA, code: YMJWSP3001). The permeation fluxes were compared and correlated with the morphologies of the tested membranes.

Preparation and Electric Double Layer Capacitance of Mesoporous Carbon

  • Shiraishi, Soshi;Kurihara, Hideyuki;Oya, Asao
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.133-137
    • /
    • 2001
  • Mesoporous activated carbon fiber (ACF) was prepared from phenolic resin containing a small amount (0.1 wt %) of organic nickel complex through carbonization and steam activation. Microporous ACF as reference sample was also prepared from phenolic resin without agent. In both cases of the mesoporous ACFs and the microporous ACFs, the electric double layer capacitance of the nonaqueous electrolyte (0.5 M $TEABF_4$/PC or 1.0 M $LiClO_4$/PC) was not proportional to the BET specific surface area. This is owing to the low permeability of nonaqueous electrolyte or the low mobility of ion in narrow micropores. However, the mesoporous ACF showed higher double layer capacitance than the microporous (normal) ACF. This result suggests that the presence of many mesopores promotes the formation of effective double layer or the transfer of ion in the micropore.

  • PDF

Pool boiling heat transfer of a copper microporous coating in borated water

  • Jun, Seongchul;Godinez, Juan C.;You, Seung M.;Kim, Hwan Yeol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1939-1944
    • /
    • 2020
  • Pool boiling heat transfer of a copper microporous coating was experimentally studied in borated water with a concentration of boric acid from 0.0 to 5.0 vol percent (vol%) to determine the effect of boric acid on boiling heat transfer in water. A high-temperature, thermally conductive microporous coating (HTCMC) was created by sintering copper powder with an average particle size of 67 ㎛ onto a 1 cm × 1 cm plain copper surface with a coating thickness of ~300 ㎛ within a furnace in a vacuum environment. The tests showed that the nucleate boiling heat transfer coefficient (NBHT) of HTCMC became slightly less enhanced as the concentration of boric acid increased but the NBHT coefficient values were still significantly higher than those of the plain surface. The critical heat flux (CHF) values from 0 to 1.0 vol% were maintained at ~2,000 kW/㎡, and then, they gradually decreased down to ~1,700 kW/㎡ as the concentration increased further to 5.0 vol%. It is believed that the micro-scale pores of the HTCMC were partially blocked by the high boric acid concentration during the nucleate boiling such that the small bubbles were not effectively created using the HTCMC reentrant cavities as the boric acid concentration increased.

Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings

  • Jun, Seongchul;Kim, Jinsub;Son, Donggun;Kim, Hwan Yeol;You, Seung M.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.932-940
    • /
    • 2016
  • Pool boiling heat transfer of water saturated at atmospheric pressure was investigated experimentally on Cu surfaces with high-temperature, thermally-conductive, microporous coatings (HTCMC). The coatings were created by sintering Cu powders on Cu surfaces in a nitrogen gas environment. A parametric study of the effects of particle size and coating thickness was conducted using three average particle sizes (APSs) of $10{\mu}m$, $25{\mu}m$, and $67{\mu}m$ and various coating thicknesses. It was found that nucleate boiling heat transfer (NBHT) and critical heat flux (CHF) were enhanced significantly for sintered microporous coatings. This is believed to have resulted from the random porous structures that appear to include reentrant type cavities. The maximum NBHT coefficient was measured to be approximately $400kW/m^2k$ with APS $67{\mu}m$ and $296{\mu}m$ coating thicknesses. This value is approximately eight times higher than that of a plain Cu surface. The maximum CHF observed was $2.1MW/m^2$ at APS $67{\mu}m$ and $428{\mu}m$ coating thicknesses, which is approximately double the CHF of a plain Cu surface. The enhancement of NBHT and CHF appeared to increase as the particle size increased in the tested range. However, two larger particle sizes ($25{\mu}m$ and $67{\mu}m$) showed a similar level of enhancement.

Preparation and Characterization of the Asymmetric Microporous Poly(vinylidene fluoride) (PVDF) Blend Membranes with Hydrophilic Surfaces

  • Hwang, Jeong-Eun;JeGal, Jong-Geon
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • To prepare chemically stable asymmetric microporous membranes with a hydrophilic surface, which would be expected to have better antifouling properties, poly(vinylidene fluoride) (PVDF) blend membranes were prepared by the phase inversion process. PVDF mixture solutions in N-methylpyrrolidone (NMP) blended with several polar potential ionic polymers such as polyacrylonitrile (PAN), poly(methylmethacrylate) (PMMA) and poly(N-isopropylacrylamide) (NIPAM) were used for the formation of the PVDF blend membranes. They were then characterized with several analytical methods such as FESEM, FTIR, contact angle measurement, pore size distribution and permeability measurement. Regardless of different polar polymers blended, they all showed a finger-like structure with more hydrophilic surface than the pristine PVDF membrane. For all the PVDF blend membrane, due to the polar potential ionic polymers used, the flux of those was improved. Especially the PVDF blend membrane with NIPAM showed the highest flux among the membranes prepared. Also antifouling property of the PVDF membrane was improved by the use of the polar polymers.

Preparation of Microporous Glasses by the Phase-Separation Technique and Their Salt-Rejection Characteristics (상분리법에 의한 다공질유리의 제조 및 탈염특성)

  • 현상훈;김계태
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.93-101
    • /
    • 1986
  • Microporous glasses were prepared from the 50 $SiO_2-44$ $B_2O_3-6$ $Na_2O$(wt%) parent glass by the phase eparation technique and were characterized by SEM, BET, and Gas Adsorption methods to investigate the possiblity of their use as salt-rejection membranes for reverse osmosis. The conditions of the phase separation for the possible glass membranes were optimized for the given parent glass. The temperature and duration of heat-treatment were desired to be lower(853K) and shorter (1/2~1 hr) respectively. The specific surface areas of porous glasses prepared in this study were about 80~120$m^2$/g and their pore size distribution had a unimodal shape(peak pore radius less than 15$\AA$) It was suggested that the porous glass obtained in this work could be effective for salt-rejection in point of pore size distributions but the way to increase its surface area for the high flux must be studied.

  • PDF

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.