• Title/Summary/Keyword: Micropollutant

Search Result 19, Processing Time 0.019 seconds

Removal of Total Organic Carbon and Micropollutants in Tertiary Treated Sewage by Medium Pressure UV/H2O2 (중압 자외선과 과산화수소 공정을 이용한 하수 3차 처리수중 총유기탄소와 미량오염물질 제거)

  • Lee, Jai-Yeop;Kim, Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.314-321
    • /
    • 2020
  • This study evaluated the applicability of UV-AOP process using medium-pressure UV lamp and H2O2 to remove TOC and emerging micropollutants in the effluent from a sewage treatment plant. The UV lamp with higher output(1.6~8.0 kW) showed slightly higher amount of power in removing TOC of 1 mg/L(0.09 kWh/mg/L~0.11 kWh/mg/L), however it was found that there was no significant difference for each cases. In addition, under the condition that the H2O2 concentration is sufficient, as the power consumption of the UV lamp increases, the unit TOC removal concentration per unit H2O2 decomposition concentration also increases, resulting in effective removal of TOC. The removal rate of 7 new trace contaminants, such as antibiotics by the UV-AOP tested, was at least 89.4%, and the ability to remove the emerging micro pollutants in the process was very effective. But, it was judged that it could not be excluded that the probablity of transforming to oxidated by-product in the case of a low TOC removal efficiency. Depending on the operating conditions of the UV and H2O2 processes, a higher BOD concentration is found in the treated water than in the influent, and it is necessary to review the UV power and proper injection conditions of H2O2 to maintain the BOD concentration increase below a certain level.

Characterization of Organic Matters Removed by Biological Activated Carbon (생물활성탄처리에서 제거된 유기물 특성)

  • Kim, Woo-Hang;Mitsumasa, Okada
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.671-675
    • /
    • 2007
  • The objective of this study was to clarify the characteristics of the removed micropollutant since the breakthrough of adsorption ability was occurred in biological activated carbon(BAC) process. The removal efficiency of DOC (Dissolved Organic Carbon) was 36 % in the breakthrough of BAC occurred by NOM (Natural Organic Matter). The most of removal DOC was found out the adsorbable and biodegradable DOC (A&BDOC). But it was not clear to remove by any mechanism because A&BDOC have simultaneously the adsorption of activated carbon and biodegradation by microorganism in BAC. The removal of bromophenol was examined with BAC and rapid sand filter, for investigation of DOC removal mechanism in the breakthrough of BAC. In this experiment, BAC filter has been operated for 20 months for the treatment of reservoir water. The BAC filter was already exhausted by NOM. Bromophenol, adsorbable and refractory matter, was completely removed by BAC filter. Therefore, it might be removed by the adsorption in BAC. Adsorption isotherms of bromophenol were compared to two BACs which was preloaded with 500 daltons and 3,000 daltons of NOM. BAC preloaded with 3,000 daltons of NOM was not decreased to the adsorbability of bromophenol but BAC preloaded with 500 daltons of NOM was greatly decreased to it. These result indicated that NOM of low molecular weight can be removed by adsorption after a long period of operation and the breakthrough by NOM in BAC. Therefore, micropollutants might be removed through adsorption by saturated BAC.

A review on status of organic micropollutants from sewage effluent and their management strategies (하수 유래 미량오염물질 현황과 관리 방안 고찰)

  • Choi, Sangki;Lee, Woongbae;Kim, Young-Mo;Hong, Seok-Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.3
    • /
    • pp.205-225
    • /
    • 2021
  • Due to the large-scale production and use of synthetic chemicals in industralized countries, various chemicals are found in the aquatic environment, which are often termed as micropollutants. Effluents of municipal wastewater treatment plants (WWTPs) have been identified as one of the major sources of these micropollutants. In this article, the current status of occurrence and removal of micropollutants in WWTPs and their management policies and options in domestic and foregin countries were critically reviewed. A large number of pharmaceuticals, personal care products, and industrial chemicals are found in WWTPs' influent, and are only partially removed by current biological wastewater treatment processes. As a result, some micropollutants are present in WWTPs' effluents, which can negatively affect receiving water quality or drinking water source. To better understand and assess the potential risk of micropollutants, a systematic monitoring framework including advanced analytical tools such as high resolution mass spectrometry and bioanalytical methods is needed. Some Western European countries are taking proactive approach to controlling the micropollutants by upgrading WWTP with enahnced effluent treatment processes. While this enahnced WWTP effluent treatment appears to be a viable option for controlling micropollutant, its implementation requires careful consideration of the technical, economical, political, and cultural issues of all stakeholders.

Determination of Efficient Operating Condition of UV/H2O2 Process Using the OH Radical Scavenging Factor (수산화라디칼 소모인자를 이용한 자외선/과산화수소공정의 효율적인 운전 조건도출)

  • Kim, Seonbaek;Kwon, Minhwan;Yoon, Yeojoon;Jung, Youmi;Hwang, Tae-Mun;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.534-541
    • /
    • 2014
  • This study investigated a method to determine an efficient operating condition for the $UV/H_2O_2$ process. The OH radical scavenging factor is the most important factor to predict the removal efficiency of the target compound and determine the operating condition of the $UV/H_2O_2$ process. To rapidly and simply measure the scavenging factor, Rhodamine B (RhB) was selected as a probe compound. Its reliability was verified by comparing it with a typical probe compound (para-chlorobenzoic acid, pCBA); the difference between RhB and pCBA was only 1.1%. In a prediction test for the removal of Ibuprofen, the RhB method also shows a high reliability with an error rate of about 5% between the experimental result and the model prediction using the measured scavenging factor. In the monitoring result, the scavenging factor in the influent water of the $UV/H_2O_2$ pilot plant was changed up to 200% for about 8 months, suggesting that the required UV dose could be increased about 1.7 times to achieve 90% caffeine removal. These results show the importance of the scavenging factor measurement in the $UV/H_2O_2$ process, and the operating condition could simply be determined from the scavenging factor, absorbance, and information pertaining to the target compound.

Occurrence of EDC/PPCPs in Influent and Effluent of a Wastewater Treatment Plant (하수처리장 유입.유출수 내 EDC/PPCPs의 발생 특성)

  • Lee, Min-Ju;Ryu, Jae-Na;Oh, Je-Ill;Kim, Hyun-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.783-792
    • /
    • 2009
  • This study investigated 31 selected EDCs(Endocrine Disrupting Compounds) and PPCPs(Pharmaceutical and Personal Care Products) in the influent and effluent of a wastewater treatment plant(WWTP) nearby Seoul metropolitan area. The chemical compounds of EDC/PPCPs detected from the plant influent sample include stimulant, X-ray contrast media and fire retardant. The total amount of each compound class were 59.67%, 20.20% and 9.00% respectively. However, in the effluent sample, the major micropolutants detected were oral beta-blocker(30.54%), fire retardant(20.49%), X-ray contrast media(18.17%). The EDC/PPCPs occurrence levels of this study were somewhat lower than previous domestic studies'. When compared to those of overseas, the values were even lower. Some pharmaceutical compound levels particularly measured in European studies were even several thousand times high. This study then compared PECs(Predicted Environmental Concentration) and MECs(Measured Environmental Concentration) of 9 selected pharmaceuticals compounds. The calculated PECs were substantially different with the MECs, while the occurrence order between the PECs and MECs in terms of concentrations of the compounds were similar.

Study on the Removal of Pharmaceuticals and Personal Care Products and Microorganism Inactivation by Ozonation (오존처리에 의한 의약품류의 제거와 미생물의 불활성화에 대한 연구 및 고찰)

  • Kim, Il-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1134-1140
    • /
    • 2010
  • Ozonation is a promising process that can effectively reduce the occurrence of micropollutants and pathogen in water. This study investigated the performance of ozonation for the removal of pharmaceuticals and personal care products (PPCPs) in secondary effluent from wastewater treatment plant. Moreover, the disinfection potential of ozonation applied for PPCPs removal was discussed. Secondary effluent filtered by sand filter was used for tested water, and ozonation was performed under 2, 4 and 6 mg/L of ozone doses. As a result, 6 mg/L of ozone dose (ozone consumption : 4.4 mg/L) was essential for the effective removal of 37 PPCPs in tested water. Several previous studies showed that the operation condition could achieve approximately 3 log inactivation of total coliform and enteroviruses. On the other hand, dissolved ozone concentration in tested water increased by 1.8 mg/L under 6 mg/L of ozone dose, probably resulting in the increase of bromate formation potential. This result implies that as alternatives to suppress the bromate formation potential during the oxidation of PPCPs by ozone, investigations on advanced oxidation processes are required.

Evaluation of Removal Efficiencies of Micropollutants in Wastewater Treatment Plants (산업폐수처리장에서의 미량유해물질 제거율 평가)

  • Lee, In-Seok;Sim, Won-Jin;Oh, Jeong-Eun;Kim, Chang-Won;Chang, Yoon-Seok;Yoon, Young-Sam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.214-219
    • /
    • 2007
  • 66 micropollutants analyses in 9 wastewater treatment plants(WWTPs) along Nak-dong river were implemented to identify the concentrations and removal efficiencies before and after treatment processes. As a result of study, the concentration levels discharged from WWTP effluents to water system were below the water quality criteria and the levels of other studies. The removal efficiencies were 84.6%(DAF/CCR) and 81.6%(AC) for 1,4-dioxane. Phenol, Clphs and PAHs were removed 94.6%, 66.4% and 80.6% respectively by the activated sludge(AS) process. The removal efficiencies of Clbzs were 45.3% for the activated sludge(AS) process and 60.6% for the activated carbon(AC) process. However, other processes besides AS and AC, the removal efficiencies of Clbzs were very low(<20%). The sand filtration(SF) process that could remove particle matters showed the best efficiency for PCDDs / Fs removal$(\geq99%)$. However, in case of relatively low PCDDs/Fs concentration level in influent, the removal efficiency was not so high$(\leq50%)$.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.