• Title/Summary/Keyword: Microphone Signal

Search Result 249, Processing Time 0.024 seconds

Performance Enhancement of Speech Intelligibility in Communication System Using Combined Beamforming (directional microphone) and Speech Filtering Method (방향성 마이크로폰과 음성 필터링을 이용한 통신 시스템의 음성 인지도 향상)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.334-337
    • /
    • 2005
  • The speech intelligibility is one of the most important factors in communication system. The speech intelligibility is related with speech to noise ratio. To enhance the speech to noise ratio, background noise reduction techniques are being developed. As a part of solution to noise reduction, this paper introduces directional microphone using beamforming method and speech filtering method. The directional microphone narrows the spatial range of processing signal into the direction of the target speech signal. The noise signal located in the same direction with speech still remains in the processing signal. To sort this mixed signal into speech and noise, as a following step, a speech-filtering method is applied to pick up only the speech signal from the processed signal. The speech filtering method is based on the characteristics of speech signal itself. The combined directional microphone and speech filtering method gives enhanced performance to speech intelligibility in communication system.

  • PDF

An Accidental Position Detection Algorithm for High-Pressure Equipment using Microphone Array (Microphone Array를 이용한 고압설비의 고장위치인식 알고리즘)

  • Kim, Deuk-Kwon;Han, Sun-Sin;Ha, Hyun-Uk;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2300-2307
    • /
    • 2008
  • This study receives the noise transmitted in a constant audio frequency range through a microphone array in which the noise(like grease in a pan) occurs on the power supply line due to the troublesome partial discharge(arc). Then by going through a series of signal processing of removing noise, this study measures the distance and direction up to the noise caused by the troublesome partial discharge(arc) and monitors the result by displaying in the analog and digital method. After these, it determines the state of each size and judges the distance and direction of problematic part. When the signal sound transmitted by the signal source of bad insulator is received on each microphone, the signal comes only in the frequency range of 20 kHz by passing through the circuit of amplification and 6th low pass filter. Then, this signal is entered in a digital value of digital signal processing(TMS320F2812) through the 16-bit A/D conversion. By doing so, the sound distance, direction and coordinate of bad insulator can be detected by realizing the correlation method of detecting the arriving time difference occurring on each microphone and the algorithm of detecting maximum time difference.

Analysis of Speech Signals Depending on the Microphone and Micorphone Distance

  • Son, Jong-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4E
    • /
    • pp.41-47
    • /
    • 1998
  • Microphone is the first link in the speech recognition system. Depending on its type and mounting position, the microphone can significantly distort the spectrum and affect the performance of the speech recognition system. In this paper, characteristics of the speech signal for different microphones and microphone distances are investigated both in time and frequency domains. In the time domain analysis, the average signal-to-noise ration is measure ration is measured for the database we collected depending on the microphones and microphone distances. Mel-frequency spectral coefficients and mel-frequency cepstrum are computed to examine the spectral characteristics. Analysis results are discussed with our findings, and the result of recognition experiments is given.

  • PDF

Design of Electret Microphone Interfacing Circuit for Microphone Signal Path Control between Intercoms (인터콤 간 마이크 신호 경로 제어를 위한 Electret Microphone 연동 회로 설계)

  • Sung-hee Cho;Seong-jae Jeong;Min-seon Kim;Deok-woo Nam;Da-na Jung;Jun-hyoung Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.309-314
    • /
    • 2024
  • Avionics Intercom performs communication between pilot, co-pilot and crews in aircraft. In the case of developing intercom in the aircraft modification development project, additional communication equipment or avionics equipment is configured to link the existing intercom with the headsets. Newly designed intercom needs a configuration that receives an aircraft headset microphone and transmits a microphone signal to the existing intercom, and these signals are required to perform signal quality above a certain level. To satisfy these requirements, microphone transmitter circuit has designed and tested, but quality factors of signal were not suitable. In order to avoid the issue, eliminate transmitter and apply signal bridge circuit considered with load effect, and it meets requirements. In this paper, the test results for the signal quality for each configuration are reviewed.

Study of Frequency Response Characteristics in Microphone Used by Optical Sensor

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in microphone using optical sensor, acousto-optic sensor system has been implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point has also been determined by measuring the response characteristics. The choosing the point, which has maximum linearity and sensitivity has changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement /analysis program, "Smaart Live" and "USBPre", which are based on PC, and compared the result from an existing capacitance microphone. The measured optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 4 kHz at up to 3 dB.

Development of an Optimized Feature Extraction Algorithm for Throat Signal Analysis

  • Jung, Young-Giu;Han, Mun-Sung;Lee, Sang-Jo
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.292-299
    • /
    • 2007
  • In this paper, we present a speech recognition system using a throat microphone. The use of this kind of microphone minimizes the impact of environmental noise. Due to the absence of high frequencies and the partial loss of formant frequencies, previous systems using throat microphones have shown a lower recognition rate than systems which use standard microphones. To develop a high performance automatic speech recognition (ASR) system using only a throat microphone, we propose two methods. First, based on Korean phonological feature theory and a detailed throat signal analysis, we show that it is possible to develop an ASR system using only a throat microphone, and propose conditions of the feature extraction algorithm. Second, we optimize the zero-crossing with peak amplitude (ZCPA) algorithm to guarantee the high performance of the ASR system using only a throat microphone. For ZCPA optimization, we propose an intensification of the formant frequencies and a selection of cochlear filters. Experimental results show that this system yields a performance improvement of about 4% and a reduction in time complexity of 25% when compared to the performance of a standard ZCPA algorithm on throat microphone signals.

  • PDF

Study and Effects of Bone Conducted Signal on the Implantable Microphone (골전도를 통한 생체신호가 이식형 마이크로폰에 미치는 영향 및 고찰)

  • Woo, S.T.;Jung, E.S.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The fully implantable hearing devices (FIHDs) have been studied to compensate the defect of conventional hearing aids. Typically, a microphone for FIHDs was implanted under the skin of the temporal bone. So, implantable microphone characteristics can be affected by the eating food, chattering teeth and moving artifact. In this paper, we fabricated the physical model that was similar to characteristics of human temporal bone and skin, and we measured implanted microphone sensitivity for effect of bone conducted noise signal. For the measurement of microphone sensitivity, we applied 1 kHz pure sounds that were transmitted to implanted microphone and sine wave vibrations of varied frequency were simultaneously transmitted through the artificial bone. As a result, sensitivity of implanted microphone can be modified by bone conducted signal and this phenomenon was confirmed at varied frequency band.

Effective Feature Vector for Isolated-Word Recognizer using Vocal Cord Signal (성대신호 기반의 명령어인식기를 위한 특징벡터 연구)

  • Jung, Young-Giu;Han, Mun-Sung;Lee, Sang-Jo
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.226-234
    • /
    • 2007
  • In this paper, we develop a speech recognition system using a throat microphone. The use of this kind of microphone minimizes the impact of environmental noise. However, because of the absence of high frequencies and the partially loss of formant frequencies, previous systems developed with those devices have shown a lower recognition rate than systems which use standard microphone signals. This problem has led to researchers using throat microphone signals as supplementary data sources supporting standard microphone signals. In this paper, we present a high performance ASR system which we developed using only a throat microphone by taking advantage of Korean Phonological Feature Theory and a detailed throat signal analysis. Analyzing the spectrum and the result of FFT of the throat microphone signal, we find that the conventional MFCC feature vector that uses a critical pass filter does not characterize the throat microphone signals well. We also describe the conditions of the feature extraction algorithm which make it best suited for throat microphone signal analysis. The conditions involve (1) a sensitive band-pass filter and (2) use of feature vector which is suitable for voice/non-voice classification. We experimentally show that the ZCPA algorithm designed to meet these conditions improves the recognizer's performance by approximately 16%. And we find that an additional noise-canceling algorithm such as RAST A results in 2% more performance improvement.

The Design of Temporal Bone Type Implantable Microphone for Reduction of the Vibrational Noise due to Masticatory Movement (저작운동으로 인한 진동 잡음 신호의 경감을 위한 측두골 이식형 마이크로폰의 설계)

  • Woo, Seong-Tak;Jung, Eui-Sung;Lim, Hyung-Gyu;Lee, Yun-Jung;Seong, Ki-Woong;Lee, Jyung-Hyun;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.144-150
    • /
    • 2012
  • A microphone for fully implantable hearing device was generally implanted under the skin of the temporal bone. So, the implanted microphone's characteristics can be affected by the accompanying noise due to masticatory movement. In this paper, the implantable microphone with 2-channels structure was designed for reduction of the generated noise signal by masticatory movement. And an experimental model for generation of the noise by masticatory movement was developed with considering the characteristics of human temporal bone and skin. Using the model, the speech signal by a speaker and the artificial noise by a vibrator were supplied simultaneously into the experimental model, the electrical signals were measured at the proposed microphone. The collected signals were processed using a general adaptive filter with least mean square(LMS) algorithm. To confirm performance of the proposed methods, the correlation coefficient and the signal to noise ratio(SNR) before and after the signal processing were calculated. Finally, the results were compared each other.

Analysis of Frequency Response Characteristics in Optical Microphone (광 마이크로폰의 주파수 응답특성 분석)

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Heh, Do-Geun;Kim, Yong-Kab
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.8-15
    • /
    • 2008
  • In this paper, in order to analyze property of frequency response in optical microphone, system was implemented. The capacitance microphone and fiber-optic transmission path type fiber-optic microphone (FOM) have weaknesses in directivity, size, weight, and price. However suggested optical microphone can be constituted by cheap devices, so it has many benefits like small size, light weight, high directivity, etc. Head part of optical microphone which is suggested in this paper is movable back and forth by sound pressure with the attached reflection plate. Operating point is determined by measuring the respond characteristics and choosing the point on which has maximum linearity and sensitivity while changing the distance between optical head and vibrating plate. We measured the output of the O/E transformed signal of the optical microphone while frequency of sound signal is changed using sound measurement/analysis program, Smaart Live and USBPre, which are based on PC, and compared the result from an existing capacitance microphone. The measured Optical microphone showed almost similar output characteristics as those of the compared condenser microphone, and its bandwidth performance was about 300[Hz]-3[kHz] at up to 3 [dB].