• 제목/요약/키워드: Microparticle retention systems

검색결과 15건 처리시간 0.016초

양이온성으로 표면 개질된 nanocoated GCC의 보류 성능 (Retention Performance of Nanocoated GCC with Positive Charge)

  • 이제곤;심규정;이학래;윤혜정
    • 펄프종이기술
    • /
    • 제45권5호
    • /
    • pp.14-22
    • /
    • 2013
  • In this study, we investigated retention characteristics of nanocoated GCC that was positively modified by Layer-by-Layer (LbL) multilayering process. Three layers were formed onto GCC particles with poly-DADMAC/PSS/poly-DADMAC (PD3) and C-starch/A-PAM/C-starch (CS3) systems, respectively. Untreated GCC, PD3 GCC (strongly positive charge) and CS3 GCC (weekly positive charge) were retained on pulp fibers under single retention system or microparticle retention system conditions. In single retention system, PD3 particles were not affected by cationic retention aid due to their strong positive charge, whereas CS3 particles reacted with cationic retention aid due to anionic sites on the surface of the weekly positive particles. In a microparticle retention system, positively modified GCC (PD3 and CS3) showed higher retention level than untreated GCC at the same dosage of retention aid. The cationic surface of GCC particles were more reacted with bentonite so the deposition onto pulp fibers was improved. In addition, the retention level of nanocoated GCC was increased with maintaining good formation.

보류시스템, 고분자 전해질 분자량과 약품투입순서에 따른 보류, 탈수, 지합, 파괴인성의 변화 (Retention, Drainage, Formation, and Fracture Toughness Depending on Retention System, Molecular Weights of Polyelectrolytes and Dosage Sequences)

  • 채희재;김문성;박창순;박종문
    • 펄프종이기술
    • /
    • 제41권2호
    • /
    • pp.13-19
    • /
    • 2009
  • In order to produce high quality paper at the lowest cost in high speed, typically various polyelectrolytes as retention aids were used. Retention systems such as single polymer system, dual polymer system, and microparticle system were used. The objective of this study was to analyze the changes of retention, drainage, formation and fracture toughness depending on types of retention system, molecular weight of C-PAM and dosage sequences of agents. When single polymer system was applied, retention was increased with poor formation and drainage. When common microparticle system(C-PAM/bentonite) was used, high molecular weight PAM gave high retention and fast drainage, but poor formation. When the microparticle system with reverse dosage sequence(bentonite/C-PAM) was used, low molecular weight PAM gave high retention, fast drainage and good formation. When various retention agents were applied, fracture toughness was increased than that of blank. When using high molecular weight PAM and consequently causing excessive flocculation, fracture toughness was decreased.

고폐쇄화 제지공정에서의 양이온성 구아 검 활용 효과 (Performance of Cationic Guar Gums in Closed Papermaking Systems)

  • 함충현;이학래
    • 펄프종이기술
    • /
    • 제40권3호
    • /
    • pp.1-8
    • /
    • 2008
  • The efficiency of retention systems including compozil-G, hydrocol, compozil-S, and micropolymer under highly closed papermaking system was evaluated using contaminated white waters prepared in the laboratory. Compozil-G and compozil-S performed better in retention than hydrocol and micropolymer systems. This suggested that stronger hydrogen bonding between fiber and guar gum or starch was formed to give stronger flocculation and better retention. Especially compozil-G outperformed compozil-S in retention, and this indicated the presence of stronger interaction between guar and cellulose fibers probably due to their similarity in chemical structure. Two compozil retention systems decreased the cationic demand and COD more effectively than hydrocol and microparticle systems. In particular, compozil-G that uses guar gum was highly effective in decreasing anionic trashes at low dosage.

Application of Micropaticle Systems in Water Circuit Closure Programs

  • Howard Johnson;Ha, Derek A.rrington
    • 펄프종이기술
    • /
    • 제33권5호
    • /
    • pp.12-20
    • /
    • 2001
  • The consequence of water system closure and reduced water consumption in Paper Mills is increased white-water conductivity associated with increased total dissolved solids. This leads to difficulties man-aging the wet end chemistry of paper machines, mainly due to stearic hindrance effects on wet end chemical additives. This in turn causes poor productivity and Inefficient chemicals usage. The success of a number of projects is reported. The application and development of new multi-component micro-particle systems which can further assist in achieving a significant degree of system closure or Zero Effluent is described.

  • PDF

목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술 (New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes)

  • Lewis, Christopher;Polverari, Marco
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2008년도 제33회 펄프종이기술 국제세미나
    • /
    • pp.1-46
    • /
    • 2008
  • fille의 효과 및 미세섬유의 보류를 콘트롤하는 것은 새로운 지종을 개발하는데 있어서 매우 중요한 것이다. 또한 기계적 성능을 최대화 하고 최종 소비자의 가 원하는 종이의 구조를 갖도록 하는데 있어서도 매우 중요한 것이다. 특히 고속 고전단력을 갖고 있는 설비에서 fille 을 많이 사용하면서 종이 및 판지를 생산하는데 있어 원하는 보류 및 지합을 구현하는 것은 매우 어렵다. 양이온 및 음이온 마이크로 폴리머(MP)의 새로운 기술이 개발되었다. 이번에 개발된 수용성 화학 물질은 휘발성유기물질(VOC) 및 알킬페놀에독실레이트(APE)가 없다. 그러한 MP 를 선형구조의 폴리아크릴아마이드와 함께 적용하거나, 무기 마이크로파티클(벤토나이트, 실리카 혹은 유사한 광물질)과 함께 사용하면 탈수, 섬유보류 그리고 회분보류에 있어서 아주 뛰어난 효과가 나타났다. 그러한 효과는 백상지 및 SC 종이등 고충전 종이에서뿐만 아니라 회분량이 적은 신문지 생산에서도 확인되었다. 특히 미표백 포장용지 생산시 폴리아크릴아마이드와 함께 양이온성 MP를 사용하면 탈수효과가 뛰어나게 개선됨을 볼 수 있었다.

  • PDF