• Title/Summary/Keyword: Microinjection

Search Result 202, Processing Time 0.021 seconds

Effect of Sucrose and Polybrene on the Gene Transfer into Porcine Oocytes using Retroviral Vector (레트로 바이러스 벡터를 이용한 돼지난자에의 유전자 전이에 있어 Sucrose와 Polybrene의 효과)

  • Kim, . K.S.;M.S. Kwon;J.Y. Ju;Kim, K.S.;Kim, T.;Lee, H.T.;K.S. Chung
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.153-163
    • /
    • 2002
  • In vitro matured porcine oocytes have very small volume of perivitellinspace (PVS). In these respect, the effect of sucrose and polybrene on the efficiency of gene transfer was investigated. As a gene (hGH) transfer vehicle, vesicular stomatitis virus glycoprotein pseudotyped retroviral vector (VSV-G) was used. Sucrose treatment has no detrimental effect on the rates of cleavage and resulted in the enlargement of PVS for the efficient introduction of retroviral vector stocks. Introduction rates of retrovirus in 0.5, 1, 2, 3 % sucrose treatment group were higher than that of the non-treatment group (39.3, 43.3, 35.7, 40.7 % vs. 8.3 %), respectively. In addition, we observed that sucrose pretreatment during injection procedure significantly reduce the frequency of polyspermy. In general, polybrene is a polycation essential for retrovirus transduction. The groups with the addition of 0.5, 5, 50$\mu\textrm{g}$/$m\ell$ polybrene exhibited a significant effect on gene transfer compared to that of the non-addition group (56.5, 50.0, 57.1 % vs. 34.6 %), respectively But, when the oocytes were co-injected with retrovirus and 50$\mu\textrm{g}$/$m\ell$ polybrene, the rates of cleavage and blastocyst development were 43.3 and 4.6%, respectively. This rates were lower than those of the non-addition group (70.0 and 17.3 %). In conclusion, sucrose pretreatment have increased efficiency of retroviral mediated gene transfer in porcine oocytes with no damage on in vitro fertilization and embryo development. In addition, sucrose pretreatment was beneficial in polyspermy inhibition. Presence of polybrene during microinjection showed a beneficial effect on the gene transfer in porcine oocytes, in low concentration. And these results will provide an useful tool for production of transgenic pigs by retroviral mediated gene transfer.

Factors Affecting Pregnancy Rates on Transfer of Pronuclear Microinjected Embryos in Korean Black Goats (전핵 미세 주입법으로 생산된 한국흑염소 수정란의 이식 조건이 수태율에 미치는 영향)

  • Choi, Y.S.;Shin, H.G.;Jang, S.K.;Yang, H.S.;Lee, O.K.;Lee, D.S.;Cho, J.K.;Shin, S.T.
    • Journal of Embryo Transfer
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2007
  • This study was investigated factors affecting the pregnancy rates after transfer of pronuclear microinjected embryos for the production of transgenic Korean black goats. Embryo transfer was carried out in 343 recipient Korean black goats from September 1999 to June 2000. Estrus was induced by the insertion of intravaginal progesterone devices $CIDR^(R)$ for 2 weeks. A single injection of 400 IU equine chorionic gonadotropin was administered at 48h before $CIDR^(R)$ removal to increase the proportion of does cycling and ovulation rate. Good quality embryos were prepared by microinjection of DNA into the pronuclei of fertilized goat oocyte and cultured in vitro. Pronuclear microinjected $1{\sim}8$ cell stage embryos were surgically transferred into the oviducts of the recipient at day 4 or 5 following $CIDR^(R)$ removal, and morula to blastocyst stage embryos were surgically transferred into uterus at day 9. Pregnancy was diagnosed by transrectal ultrasound scanning at $20{\sim}30d$ and 8 weeks following embryo transfer. The pregnancy rate was affected by several factors, such as estrus induction, the number of previous transfer, transfer site, stage of CL (corpus luteum), the number of recipient CL, stage of embryos and the number of transferred embryo. The pregnancy rate was significantly higher in recipients that came into estrus naturally than recipients that induced to come into estrus with $CIDR^(R)$(59.1% vs. 36.8%; P<0.05). The pregnancy rate was higher when the embryos were transferred into the left oviduct than transferred into the right oviduct (42.9% vs. 35.3%; P<0.05). The pregnancy rate of recipients with $CH_1$ (early) stage corpus hemorrhagicum in ovary was hi틴or than recipient with $CH_3$ (late) stage hemorrhagicum (47.5% vs. 17.9%; P<0.01). Higher pregnancy rates were obtained by transfer of 1-cell stage embryos into oviduct while late blastocysts (51.6% vs. 66.7%; P<0.01) into uterus. The pregnancy rates when 3 embryos were transferred to recipients were significantly higher than when 2 embryos we.e transferred (47.6% vs. 27.0%; P<0.05). Although there were no significant difference among the group, adhesion of reproductive organs, uterine size, ovulation rate of recipients, presence of large follicle and difficulty of transfer affected pregnancy rate of recipient. Higher pregnancy rates were obtained in the recipients with $8{\sim}15m$ diameter uterine horn as compared to the recipients with <5m diameter or >20mm diameter uterine hem (38.9%, 20% vs. 18.2%), in the recipients with large follicle in the ovulated ovary ipsilaterally (53.6% vs. 37.1%) and in the transfer which was carried out easily (39.2% vs. 27.8%, 0%). In conclusion, the high rate of pregnancy was achieved following transfer of pronuclear microinjected embryos when three or four 1-cell stage embryos were transferred into oviduct with $CH_1$ stage corpus hemorrhagicum in the ovary of recipient which came into estrus naturally.