• 제목/요약/키워드: Microgrids

검색결과 88건 처리시간 0.021초

Dynamic Economic Dispatch for Microgrid Based on the Chance-Constrained Programming

  • Huang, Daizheng;Xie, Lingling;Wu, Zhihui
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1064-1072
    • /
    • 2017
  • The power of controlled generators in microgrids randomly fluctuate because of the stochastic volatility of the outputs of photovoltaic systems and wind turbines as well as the load demands. To address and dispatch these stochastic factors for daily operations, a dynamic economic dispatch model with the goal of minimizing the generation cost is established via chance-constrained programming. A Monte Carlo simulation combined with particle swarm optimization algorithm is employed to optimize the model. The simulation results show that both the objective function and constraint condition have been tightened and that the operation costs have increased. A higher stability of the system corresponds to the higher operation costs of controlled generators. These operation costs also increase along with the confidence levels for the objective function and constraints.

Wireless Paralleled Control Strategy of Three-phase Inverter Modules for Islanding Distributed Generation Systems

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.479-486
    • /
    • 2013
  • This paper presents a control strategy for distributed systems, which can be used in islanded microgrids. The control strategy is based on the droop method, which uses locally measured feedback to achieve load current sharing. Instead of the traditional droop method, an improved one is implemented. A virtual inductor in the synchronous frame for three-phase inverters is proposed to deal with the coupling of the frequency and the amplitude related to the active and reactive power. Compared with the traditional virtual inductor, the proposed virtual inductor is not affected by high frequency noises because it avoids differential calculations. A model is given for the distributed generation system, which is beneficial for the design of the droop coefficients and the value of the virtual inductor. The effectiveness of the proposed control strategy is verified by simulation and experiment results.

Distributed Adaptive Virtual Impedance Control to Eliminate Reactive Power Sharing Errors in Single-Phase Islanded Microgrids

  • Hoang, Tuan V.;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.120-121
    • /
    • 2017
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approach in order to address the inaccurate reactive power sharing problem. The proposed method can adaptively regulate the DG virtual impedance, and the effect of the mismatch in feeder impedances is compensated to share the reactive power accurately. The proposed control strategy is fully distributed and the need for the microgrid central controller is eliminated. Furthermore, the proposed method can be directly implemented without requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

양방향 컨버터를 이용한 직류 마이크로그리드 연계 모델과 운영 방안 (Operational Schemes of Interconnected DC Microgrids using a Bi-directional Converter)

  • 이문현;김혜진;최우인;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.259-260
    • /
    • 2014
  • 본 논문에서는 모듈화된 두 직류 마이크로그리드를 직류 버스 레벨에서 양방향 DC-DC 컨버터로 연계한 새로운 시스템을 제안한다. 연계 컨버터로 인해 모듈 간 직접적인 전력 전송이 가능하므로 전체 시스템의 효율이 향상되고 한 모듈의 교류 전원 연결 사고 시 빠른 대처 및 복구가 가능하다. 이로 인해 제안하는 시스템은 다수의 모듈화된 직류 배전 시스템으로 구성되는 데이터 센터 등에 적용할 수 있다. 제안하는 시스템 모델과 운영 방안은 시뮬레이션을 통해 검증하였다.

  • PDF

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

Power Flow Control of Four Channel Resonant Step-Down Converters

  • Litvani, Lilla;Hamar, Janos
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1393-1402
    • /
    • 2019
  • This paper proposes a new power flow control method for soft-switched, four channel, five level resonant buck dc-dc converters. These converters have two input channels, which can be supplied from sources with identical or different voltages, and four output channels with arbitrary output voltages. They are specially designed to supply multilevel inverters. The design methodology for their power flow control has been developed considering a general case when the input voltages, output voltages and loads can be asymmetrical. A special emphasize is paid to the limitations and restrictions of operation. The theoretical studies are confirmed by numerical simulations and laboratory tests carried out at various operation points. Exploiting the advantages of the newly proposed power control strategy, the converter can supply five level inverters in dc microgrids, active filters, power factor correctors and electric drives. They can also play an interfacing role in renewable energy systems.

Control Strategy for Accurate Reactive Power Sharing in Islanded Microgrids

  • Pham, Xuan Hoa Thi;Le, Toi Thanh
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.1020-1033
    • /
    • 2019
  • This paper presents a control strategy to enhance the accuracy of reactive power sharing between paralleled three-phase inverters in an islanded microgrid. In this study, the mismatch of power sharing when the line impedances have significant differences between inverters connected to a microgrid has been solved, the accuracy of the reactive power sharing in an islanded microgrid is increased, the voltage droop slope is tuned to compensate for the mismatch of voltage drops across the line impedances by using an enhanced droop controller. The proposed method ensures accurate power sharing even if the microgrid has local loads at the output of the inverters. The control model has been simulated by MATLAB/Simulink with two or three inverters connected in parallel. Simulation results demonstrate the accuracy of the implemented control method. Furthermore, in order to validate the theoretical analysis and simulation results, an experimental setup was built in the laboratory. Results obtained from the experimental setup verify the effectiveness of the proposed method.

소규모 마이크로그리드에서 프로슈머관리시스템의 구현 (Implementation of Prosumer Management System for Small MicroGrid)

  • 임수연;이태원
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.590-596
    • /
    • 2020
  • 상용전력망과 계통연계가 어려운 도서지역에서는 독립적인 마이크로그리드로 생산된 에너지를 효율적으로 관리할 수 있는 방법을 찾는 것은 매우 중요한 일이다. 본 논문에서는 태양광과 풍력의 하이브리드 모델을 적용한 소규모 마이크로그리드에서 생산된 전력을 전력계측기와 수집된 데이터의 응답속도 테스트를 거쳐 P2P전력거래를 위한 프로슈머관리시스템을 구현하였다. 마이크로그리드 프로슈머 관리시스템의 전력망은 Mesh구조로 이루어져 있으며 P2P전력거래는 3곳의 독립적으로 구축된 off-grid 사이트에서 전력계측기와 DC전력전송기를 이용하여 테스트하였고, 이때 전력계측기의 측정값은 전압(평균값) : 380V + 0.9V, 전류(평균값) : + 0.01A, 전력 : 1000W ( - 1W)로 오차 허용범위인 ±1%이내로 나타나 그 유의성을 확인하였다. 실시간으로 50개의 데이터를 동시 전송하여 메인화면 0.32초, 일 발전량 2.61초, 누적발전량 2.77초, 전력거래 0.11초 등의 응답속도가 나타나 서버의 안정화를 확인하였다. 따라서 본 시스템은 한국전력의 중계 없이 독립적인 망으로 활용될 수 있는 P2P 전력거래시스템으로서 그 타당성이 입증되었다.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.