• Title/Summary/Keyword: Microgrid System

Search Result 253, Processing Time 0.02 seconds

Direct Harmonic Voltage Control Strategy of Shunt Active Power Filters Suitable for Microgrid Applications

  • Munir, Hafiz Mudassir;Zou, Jianxiao;Xie, Chuan;Li, Kay;Younas, Talha;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.265-277
    • /
    • 2019
  • The application of shunt active power filters (S-APFs) is considered to be the most popular approach for harmonic compensation due to its high simplicity, ease of installation and efficient control. Its functionality mainly depends upon the rapidness and precision of its internally built control algorithms. A S-APF is generally operated in the current controlled mode (CCM) with the detection of harmonic load current. Its operation may not be appropriate for the distributed power generation system (DPGS) due to the wide dispersion of nonlinear loads. Despite the fact that the voltage detection based resistive-APF (R-APF) appears to be more appropriate for use in the DPGS, the R-APF experiences poor performance in terms of mitigating harmonics and parameter tuning. Therefore, this paper introduces a direct harmonic voltage detection based control approach for the S-APF that does not need a remote harmonic load current since it only requires a local point of common coupling (PCC) voltage for the detection of harmonics. The complete design procedure of the proposed control approach is presented. In addition, experimental results are given in detail to validate the performance and superiority of the proposed method over the conventional R-APF control. Thus, the outcomes of this study approve the predominance of the discussed strategy.

Implementation of Prosumer Management System for Small MicroGrid (소규모 마이크로그리드에서 프로슈머관리시스템의 구현)

  • Lim, Su-Youn;Lee, Tae-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.590-596
    • /
    • 2020
  • In the island areas where system connection with the commercial power grid is difficult, it is quite important to find a method to efficiently manage energy produced with independent microgrids. In this paper, a prosumer management system for P2P power transaction was realized through the testing the power meter and the response rate of the collected data for the power produced in the small-scale microgrids in which hybrid models of solar power and wind power were implemented. The power network of the microgrid prosumer was composed of mesh structure and the P2P power transaction was tested through the power meter and DC power transmitter in the off-grid sites which were independently constructed in three places. The measurement values of the power meter showed significant results of voltage (average): 380V + 0.9V, current (average): + 0.01A, power: 1000W (-1W) with an error range within ±1%. Stabilization of the server was also confirmed with the response rate of 0.32 sec. for the main screen, 2.61 sec. for the cumulative power generation, and 0.11 sec for the power transaction through the transmission of 50 data in real time. Therefore, the proposed system was validated as a P2P power transaction system that can be used as an independent network without transmitted by Korea Electric Power Corporation (KEPCO).

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.