• Title/Summary/Keyword: Microgrid System

Search Result 253, Processing Time 0.017 seconds

Simulation Analysis of a Renewable Energy Based Microgrid using RTDS (RTDS를 이용한 신재생에너지 기반 마이크로그리드 시뮬레이션 해석)

  • Heo, Se-Rim;Kim, Gyeong-Hun;Lee, Hyo-Guen;Hwang, Chul-Sang;Park, Min-Won;Yu, In-Keun;Park, Jung-Do;Yi, Dong-Young;Lee, Sang-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2190-2195
    • /
    • 2011
  • Due to enhanced demands on quality, security and reliability of the electric power energy system, a microgrid has become a subject of special interest. In this paper, output characteristics of energy storage system (ESS) with an electric double layer capacitor (EDLC) and battery energy storage system (BESS) of a renewable energy based microgrid were analyzed under grid-connected and islanded operation modes. The microgrid which consists of photovoltaic and wind power turbine generators, diesel generator, ESS with an EDLC, BESS and loads was modeled using real time digital simulator. The results present the effective control patterns of the microgrid system.

The System Design and Demonstration for Autonomous Microgrid Operation

  • Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Kim, Heung-Geun;Seo, Gyu-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • The autonomous microgrid is a system that is autonomously operated depending on the grid and internal load condition, without the operator's intervention. In this study, a control algorithm for the microsource and an operation algorithm for the microgrid are proposed to realize the autonomous microgrid system. In addition, a microgrid operation system based on the operation algorithm is proposed. The electromagnetic transient program is used by the proposed microsource control algorithm for simulation, and the validity of the algorithm is verified. The proposed operation system is verified based on a case study using a simulator and test devices.

Study on the Dynamic Synchronizing Control of An Islanded Microgrid (독립운전 마이크로그리드의 능동형 동기 투입 제어에 관한 연구)

  • Cho, Chang-Hee;Jeon, Jin-Hong;Kim, Jong-Yul;Kwon, Soon-Man;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1112-1121
    • /
    • 2011
  • A microgrid is an aggregation of multiple distributed generators (DGs) such as renewable energy sources, conventional generators, and energy storage systems that provide both electric power and thermal energy. Generally, a microgrid operates in parallel with the main grid. However, there are cases in which a microgrid operates in islanded mode, or in a disconnected state. Islanded microgrid can change its operational mode to grid-connected operation by reconnection to the grid, which is referred to as synchronization. Generally, a single machine simply synchronizes with the grid using a synchronizer. However, the synchronization of microgrid that operate with multiple DGs and loads cannot be controlled by a traditional synchronizer, but needs to control multiple generators and energy storage systems in a coordinated way. This is not a simple job, considering that a microgrid consists of various power electronics-based DGs as well as alternator-based generators that produce power together. This paper introduces the results of research examining an active synchronizing control system that consists of the network-based coordinated control of multiple DGs. Consequently, it provides the microgrid with a deterministic and reliable reconnection to the grid. The proposed method is verified by using the test cases with the experimental setup of a microgrid pilot plant.

Implementation of Microgrid using Energy Storage System (에너지 저장장치를 이용한 마이크로그리드의 구현)

  • Lee, Kye-Byung;Son, Kwang-M.;Jang, Gil-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.248-254
    • /
    • 2010
  • This paper deals with implementation of the laboratory-scale microgrid using energy storage system. Also, this paper develops a simulation model of the microgrid with same parameters on the laboratory-scale microgrid using PSCAD/EMTDC. The experimental results show good agreement with the simulation results. This shows the validity of the simulation model. A valve regulated lead acid (VRLA) battery is used to store energy. Energy storage system with fast response is able to maintain power quality of sensitive load within the microgrid.

A Microgrid Operation based on a Power Market Environment

  • Kim, Hak-Man;Kinoshita, Tetsuo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.61-68
    • /
    • 2009
  • A Microgrid is a private small-scale power system composed of distributed energy resources (DERs), storage devices and loads. And it is expected that the Microgrid will come into wide use in the near future. For this, the establishment of the Microgrid operation methodology is a very important problem. Especially, the Microgrid is greatly different from existing private small-scale power systems because of the multiple participants. Therefore, the Microgrid operation considered various requirements according to multiple participants is more complicated than the operation of existing private small-scale power systems. In this paper, Microgrid operation methodology based on a market environment is suggested. Through case studies, the effectiveness of the suggested methodology is verified.

The Application Method of DC Distribution in Microgrid (마이크로그리드의 직류 배전 적용 방안)

  • Lee, Soon-myung;Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.92-99
    • /
    • 2016
  • In this paper, After the Paris climate conference (COP21) in December 2015, 195 countries adopted the first-ever universal, legally binding global climate deal. As sustained increase of renewable energy and digital load, to implemented and operated Microgrid system's power distribution by DC power distribution. This reduce the loss of power conversion step occurring based on the AC power distribution system and eliminate the loss caused by the reactive power in power distribution system. For this reason, DC Microgrid will be extended to support evidence of National energy policies, Microgrid project status, DC distribution status, and to suggest process of DC power distribution in Microgrid construction project.

Islanded Microgrid Simulation using Hardware-in-the Loop Simulation (HILS) System based on OPAL-RT (OPAL-RT 기반의 Hardware-in-the-Loop Simulation (HILS) 시스템을 이용한 독립운전모드 마이크로그리드 시뮬레이션)

  • Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.566-572
    • /
    • 2013
  • A microgrid is a small scale power system. The microgrid is operated in two operation modes, the grid-connected mode and the islanded mode. In the islanded mode, the frequency of a microgrid should be maintained constantly. For this, the balance between power supply and power demand during islanded mode should be met. In general, energy storage systems (ESSs) are used to solve power imbalance. In this paper, the frequency control effect of a Lithium-ion battery energy storage system (Li-ion BESS) has been tested on the hardware-in-the loop simulation (HILS) system environment.

Implementation of Two TMS320F28335 based BESS Controllers for Microgrid and Control Performance Test in the Hardware-in-the-Loop Simulation System (마이크로그리드용 2기의 TMS320F28335 기반 BESS 제어기 구현 및 Hardware-in-the-Loop Simulation 시스템을 이용한 제어 성능 테스트)

  • Kim, Nam-Dae;Yoo, Hyeong-Jun;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.559-564
    • /
    • 2014
  • A microgrid as a small scale power system is operated by the grid-connected mode and islanded mode. It is anticipated that the battery energy storage system (BESS) is able to be applied to the microgrid for stable power control, such as tie-line and smoothing control in the grid-connected mode and voltage and frequency control in the islanded mode. In this paper, a digital signal processor (DSP), Two BESS controllers based on TMS320F28335 of a microgrid are implemented and are tested to show control performance in the hardware-in-the loop simulation (HILS) system.

Microgrid Island Operation Based on Power Conditioning System with Distributed Energy Resources for Smart Grid (스마트 그리드를 위한 분산자원과 전력변환장치 기반 마이크로그리드 독립운전)

  • Heo, Sewan;Park, Wan-Ki;Lee, Ilwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1093-1101
    • /
    • 2017
  • Microgrid as a unit component consisting a smart grid is an isolated system, which has a decentralized power supply system. This paper proposes an electrical isolation of the microgrid from the utiliy grid based on a power conditioning system, and also proposes an operation method maintaining the isolated state efficiently using diverse distributed energy resources such as renewable energy sources and energy storage system. The proposed system minimizes the influence of the grid connection on the internal load though a phase detection and synchrnoization to the utiligy grid and the microgrid can be stable even if the grid is failed.

Frequency Control Method of Grid Interconnected Microgrid Operating in Stand Alone Mode (계통연계형 마이크로그리드의 독립운전시 주파수 제어에 관한 연구)

  • Chae, Woo-Kyu;Lee, Hak-Ju;Park, Jung-Sung;Cho, Jin-Tae;Won, Dong-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1099-1106
    • /
    • 2012
  • Microgrid is a new electrical energy system that composed of various generators, renewable energy, batteries and loads located near the electrical customers. When Microgrid is interconnected with large power system, Microgrid don't need to control the frequency. But in case of the outage or faults of power system, Microgrid should control the frequency to prevent the shutdown of Microgrid. This paper presents the frequency control methods using the droop function, being used by synchronous generators and EMS(Energy Management System). Using droop function, two battery systems could share the load based on locally measured signals without any communications between batteries. Also, we suggest that EMS should control the controllable distributed generators as P/Q control modes except batteries to overcome the weakness of droop function. Finally we suggest the two batteries systems to prolong the battery's life time considering the economical view. The validation of proposed methods is tested using PSCAD/EMTDC simulations and field test sites at the same time.