• Title/Summary/Keyword: Microglial Cells

Search Result 180, Processing Time 0.096 seconds

Inhibitory Effects of Jojoongikgi-tang on the Secretion of PGE2 and NO and Cytokines in LPS-stimulated BV2 Microglial Cells

  • Lee, Jun-Moon;Lyu, Sun-Ae;Lee, Seung-Yeon;Kim, Bo-Kyung;Ko, Woo-Shin
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.97-107
    • /
    • 2007
  • Objectives This experiment is about Jojoongikgi-tang(JIT) exerts anti-inflammatory effects in BV2 microglial cells, and the effect of JIT on Nitric oxide(NO) production in lipopolysaccharide(LPS)-stimulated BV2 microglial cells were also demonstrated. Methods To investigate the anti-inflammatory effects of JIT, NO production, expression level of iNOS mRNA, PGE2 synthesis, expression COX-2 mRNA, cell viability, $TNF-{\alpha}$ mRNA expression were examined. Results The expression level of inducible nitric oxide synthase(iNOS) was decreased by JIT, and the production of Prostaglandin E2(PGE2) and the expression of Cox-2 mRNA also were inhibited by JIT. Proinflammatory mediators, such as $TNF-{\alpha}$, $IL-1{\beta}$, IL-12, were inhibited by JIT in a dose-dependent manner. Conclusions JIT have anti-inflammatory effects in BV2 microglial cells and could be used in inflammatory disease.

  • PDF

The Gene Expression Profile of LPS-stimulated Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Sung-Hoon;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • This study was conducted to evaluate the inflammatory mechanisms of LPS-stimulated BV-2 microglial cells. The inflammation mechanism was evaluated in BV-2 cells with or without LPS treated using the Affymetrix microarray analysis system. The microarray analysis revealed that B cell receptor signaling pathway, cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, MAPK signaling pathway, Neuro-active ligand-receptor interaction, TLR signaling path-way, and T cell receptor signaling pathway-related genes were up-regulated in LPS stimulated BV-2 cells. Selected genes were validated using real time RTPCR. These results can help an effective therapeutic approach to alleviating the progression of neuro-in-flammatory diseases.

Effect of Ethanol Extracts from Defatted Perilla frutescens on LPS-induced Inflammation in Mouse BV2 Microglial Cells

  • Lee, Sung-Gyu;Kang, Hyun
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.398-404
    • /
    • 2018
  • To evaluate the antioxidant and anti-neuroinflammatory effects of defatted Perilla frutescens extract (DPE) in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Cell viabilities were estimated by MTT assay. LPS-stimulated BV-2 microglia were used to study the expression and production of inflammatory mediators such as nitric oxide (NO), inducible NO synthase (iNOS), Cyclooxygenase-2 (COX-2), and prostaglandin $E_2$ ($PGE_2$). Pretreatment with DPE prior to LPS treatment significantly inhibited excessive production of NO (10, 25, 50, 75, and $100{\mu}g/mL$) in a dose-dependent manner, and was associated with down regulation of expression of iNOS and COX-2. DPE also suppressed the LPS-induced increase in $PGE_2$ level (10, 25, 50, 75, and $100{\mu}g/mL$) in BV-2 cells. Therefore, DPE can be considered as a useful therapeutic and preventive approach for the treatment of several neurodegenerative diseases.

Effect of Cirsii Japonici Herba on LPS-induced Inflammation in Mouse BV2 Microglial cells (대계(大薊)가 LPS로 유도된 Mouse BV2 Microglial cells의 염증반응에 미치는 영향)

  • Kim, Young-Sun;Lee, Seoung-Geun;Lee, Key-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.1048-1060
    • /
    • 2008
  • Cirsii Japonici Herba(CJ) is a wild perennial herb found in many areas of Korea as well as China and Japan, which has been used to treat bleeding and inflammation. Silibinin is the main flavonoid extracted from milk thistle (Cirsii Japonici Herba). It exhibits potent antioxidant activity and anti-inflammatory effect. In this study, the effect of CJ and silibinin extract on lipopolysaccharide-induced inflammation was investigated using MTS assay, RT-PCR, western blot, and nitric oxide detection on mouse BV2 microglial cell lines. In the present results, CJ and silibinin extract suppressed nitric oxide production by inhibiting the lipopolysaccharide-stimulated enhancement of COX-2 and iNOS gene expression in BV2 cells. Moreover, CJ and silibinin also repressed some lipopolysaccharide-induced signaling molecules. Importantly, catalase-induced COX-2 and iNOS expression needed activations of $NF-{\kappa}B$, PI3K/Akt, and MAPK, which were important for the transcriptional up-regulation of COX-2 and iNOS. CJ and silibinin interaction on BV2 cells down-regulated $NF-{\kappa}B$-dependent proinflammatory cytokine (IL-2,IL-6) expression. They are involved in the regulation of inflammatory responses. These data shows that CJ and silibinin exerts anti-inflammatory and analgesic effects, probably by suppression of COX-2 and iNOS synthase expression in BV2 microglial cells.

  • PDF

Effects of α-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation

  • Kim, Su Min;Ha, Ji Sun;Han, A Reum;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.613-618
    • /
    • 2019
  • Microglial cells are known as the main immune cells in the central nervous system, both regulating its immune response and maintaining its homeostasis. Furthermore, the antioxidant ${\alpha}-lipoic$ acid (LA) is a recognized therapeutic drug for diabetes because it can easily invade the blood-brain barrier. This study investigated the effect of ${\alpha}-LA$ on the inflammatory response in lipopolysaccharide (LPS)-treated BV-2 microglial cells. Our results revealed that ${\alpha}-LA$ significantly attenuated several inflammatory responses in BV-2 microglial cells, including pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6, and other cytotoxic molecules, such as nitric oxide and reactive oxygen species. In addition, ${\alpha}-LA$ inhibited the LPS-induced phosphorylation of ERK and p38 and its pharmacological properties were facilitated via the inhibition of the nuclear factor kappa B signaling pathway. Moreover, ${\alpha}-LA$ suppressed the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, multiprotein complexes consisting of NLRP3 and caspase-1, which are involved in the innate immune response. Finally, ${\alpha}-LA$ decreased the genes accountable for the M1 phenotype, $IL-1{\beta}$ and ICAM1, whereas it increased the genes responsible for the M2 phenotype, MRC1 and ARG1. These findings suggest that ${\alpha}-LA$ alleviates the neuroinflammatory response by regulating microglial polarization.

Potential Effects of Microglial Activation Induced by Ginsenoside Rg3 in Rat Primary Culture: Enhancement of Type A Macrophage Scavenger Receptor Expression

  • Joo, Seong-Soo;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1164-1169
    • /
    • 2005
  • Brain microglia are phagocytic cells that are the major inflammatory response cells of the central nervous system and widely held to play important pathophysiologic roles in Alzheimer's disease (AD) in both potentially neurotoxic responses and potentially beneficial phagocytic responses. In the study, we examined whether ginsonoside Rg3, a by-product of red ginseng, enhances the microglial phagocytosis of $A{\beta}$. We found that Rg3 promoted $A{\beta}$ uptake, internalization, and digestion. Increased maximal $A{\beta}$ uptake was observed at 4 and 8 h after Rg3 pretreatment (25 ${\mu}g/mL$), and the internalized $A{\beta}$ was almost completely digested from cells within 36 h when pretreated with Rg3 comparing with single non-Rg3-treated groups. The expression of MSRA (type A MSR) was also up-regulated by Rg3 treatment in a dose- and time-dependent manner which was coincidently identified in western blots for MSRA proteins in cytosol. These results indicate that microglial phagocytosis of $A{\beta}$ may be enhanced by Rg3 and the effect of Rg3 on promoting clearance of $A{\beta}$ may be related to the MSRA-associated action of Rg3. Thus, stimulation of the MSRA might contribute to the therapeutic potentials of Rg3 in microglial phagocytosis and digestion in the treatment of AD.

Role of microglial activation on neuronal excitability in rat substantia gelatinosa

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.225-231
    • /
    • 2020
  • Glial cells, including astrocytes and microglia, interact closely with neurons and modulate pain transmission, particularly under pathological conditions. In this study, we examined the excitability of substantia gelatinosa (SG) neurons of the spinal dorsal horn using a patch clamp recording to investigate the roles of microglial activation in the nociceptive processes of rats. We used xanthine/xanthine oxidase (X/XO), a generator of superoxide anion (O2·-), to induce a pathological pain condition. X/XO treatment induced an inward current and membrane depolarization. The inward current was significantly inhibited by minocycline, a microglial inhibitor, and fluorocitrate, an astrocyte inhibitor. To examine whether toll-like receptor 4 (TLR4) in microglia was involved in the inward current, we used lipopolysaccharide (LPS), a highly specific TLR4 agonist. The LPS induced inward current, which was decreased by pretreatment with Tak-242, a TLR4-specific inhibitor, and phenyl N-t-butylnitrone, a reactive oxygen species scavenger. The X/XO-induced inward current was also inhibited by pretreatment with Tak-242. These results indicate that the X/XO-induced inward current of SG neurons occurs through activation of TLR4 in microglial cells, suggesting that neuroglial cells modulate the nociceptive process through central sensitization.

Inhibitory Effects of Forsythia velutina and its Chemical Constituents on LPS-induced Nitric Oxide Production in BV2 Microglial Cells

  • Kim, Na-Yeon;Ko, Min Sung;Lee, Chung Hyun;Lee, Taek Joo;Hwang, Kwang-Woo;Park, So-Young
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Neuroinflammation is known to be associated with brain injury in Alzheimer's disease (AD), and the inhibition of microglial activation, a key player in inflammatory response, is considerd as important target for AD. In this study, the ethanol extract of aerial parts of Forsythia velutina Nakai, a Korean native species, significantly inhibited nitric oxide (NO) production in LPS-stimulated BV2 microglial cells. Thus, the active principles in F. velutina aerial parts were isolated based on activity-guided isolation method. As a result, six compounds were isolated and their structures were elucidated based on NMR data and the comparison with the relevant references as arctigenin (1), matairesinol (2), rengyolone (3), ursolic acid (4), secoisolariciresinol (5), and arctiin (6). Among them, four compounds including arctigenin (1), matairesinol (2), secoisolariciresinol (5), and arctiin (6) significantly inhibited NO production in a dose-dependent manner. In particular, matairesinol (2) and secoisolariciresinol (5) reduced 60% of NO production compared to LPS-treated group. This inhibitory effects of matairesinol (2) and secoisolariciresinol (5) were accompanied with the reduced expression levels of iNOS and COX-2. These results suggest that the extract of F. velutina and its active compounds could be beneficial for neuroinflammatory diseases including AD.

Anti-inflammatory activity of Kyungok-go on Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Hyun-Suk Song;Ji-Yeong An;Jin-Young Oh;Dong-Uk Kim;Bitna Kweon;Sung-Joo Park;Gi-Sang Bae
    • The Journal of Korean Medicine
    • /
    • v.43 no.4
    • /
    • pp.20-32
    • /
    • 2022
  • Objectives: Kyungok-go (KOG) is a traditional multi-herbal medicine commonly used for enforcing weakened immunity for long time. Recently, there are several reports that KOG has anti-inflammatory and immuno-stimulatory activities in many experimental models. However, the protective effects of KOG on neuronal inflammation are still undiscovered. Thus, we investigated the neuro-protective activity of KOG on lipopolysaccharide (LPS)-stimulated mouse microglia cells. To find out KOG's anti-neuroinflammatory effects on microglial cells, we examined the production of nitrite using griess assay, and mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α using real time RT-PCR. In addition, to examine the regulating mechanisms of KOG, we investigated the protein expression of mitogen-activated protein kinases (MAPKs) and Iκ-Bα by western blot. KOG inhibited the elevation of nitrite, iNOS and COX-2 on LPS-stimulated BV2 cells. Also, KOG significantly inhibited the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α on LPS-stimulated BV2 microglial cells. Moreover, KOG inhibited the activation of c-Jun N-terminal kinase (JNK), P38 and degradation of Iκ-Bα but not the activation of extracellular signal regulated kinase (ERK) on LPS-stimulated BV2 microglial cells. These results showed KOG has the anti-inflammatory effects through the inhibition on nitrite, iNOS, COX-2, IL-1β, IL-6, and TNF-α via the deactivation of JNK, p38 and nuclear factor (NF)-κB on LPS-stimulated BV2 microglial cells. Thereby, KOG could offer the new and promising treatment for neurodegenerative disease related to neuroinflammation.

Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

  • Kwon, Seung-Hwan;Ma, Shi-Xun;Ko, Yong-Hyun;Seo, Jee-Yeon;Lee, Bo-Ram;Lee, Taek Hwan;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.543-551
    • /
    • 2016
  • This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin $E_2$ ($PGE_2$), tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-1 beta (IL-$1{\beta}$), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-${\kappa}B$ p65). VBME significantly inhibited LPS-induced production of NO and $PGE_2$ and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-${\kappa}B$ p65 translocation by blocking $I{\kappa}B-{\alpha}$ phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-${\kappa}B$ signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.