• Title/Summary/Keyword: Microfracture

Search Result 62, Processing Time 0.017 seconds

EFFECT OF A COUNTER-TORQUE DEVICE AND THE INTERNAL HEXAGON OF ABUTMENT ON THE TIGHTENING TORQUE TRANSMITTED TO THE IMPLANT (회전방지장치와 지대주의 내육각구조가 임플란트로 전달되는 조임 회전력에 미치는 영향)

  • Lee Sang-Min;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.223-231
    • /
    • 2003
  • Statement of problem : Little is known about the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. Purpose : The purpose of this study was to examine the effect of a counter-torque device and the internal hexagon of abutment on the tightening torque transmitted to the implant. Material and Methods : In this study, three types of abutment were used, (1) two-piece conical abutment with hexagon, (2) two-piece conical abutment without hexagon, and (3) one-piece conical abutment without hexagon. The experimental groups were divided into five groups according to the type of abutment and the usage of a counter-torque device. Group I : two-piece conical abutment with internal hexagon was tightened without the use of a counter-torque device. Group II : two-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group III : one-piece conical abutment without internal hexagon was tightened without the use of a counter-torque device. Group IV : two-piece conical abutment with internal hexagon was tightened with the use of a counter-torque device Group V : two-piece conical abutment without internal hexagon was tightened with the use of a counter-torque device. Abutments were tightened 20Ncm torque with the use of manual torque wrench and then torque values were measured by torque-gauge. After the measurement of torque values, all groups were loosened with the use of manual torque wrench and then detorque values were measured by torque-gauge. Results : The results were as follows. 1. There were no differences in torque values among three types of abutment. 2. Regardless of the existence of the internal hexagon of abutment, a counter-torque device decreased the tightening torque transmitted to the implant about 92% 3. In group III showed the highest detorque value, however there were no differences among group I, II, IV and V. Conclusion : Within the limitations of this study, it was concluded that the internal hexagon of abutment has no effect on the tightening torque transmitted to the implant and the detorque value of abutment screw. The use of a counter-torque device is essential to prevent microfracture on the implant-bone interface but has no effect on preload.

Characterization of the Stresses in the Luting Cement Layer Affected by Location of the Occlusal Points and Loading Direction on a Full Veneer Crown (유한요소법을 이용한 전부주조관의 교합점 위치와 하중방향이 시멘트층 내 응력에 미치는 영향)

  • Lee, Jung-Hoon;Lee, Kyu-Bok;Lee, Cheong-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2008
  • The objective of this study was to test effects of (1) where the occlusal contact points locate on a full veneer crown, and (2) which direction the contact forces are directed to, on the stresses within the luting cement layer that might suffer microfracture. A total of 27 finite element models were created for a mandibular first molar, combining 9 different locations of the occlusal contact points and 3 different loading directions. Type 3 gold alloy was used for crown material with a chamfer margin, and the luting cement material was glass ionomer cements in uniform thickness of $75{\mu}m$. Modeled crowns were loaded at 100 N. Different patterns in the cement stress were observed in the vicinity of the buccal and lingual margins. Whereas, the peak stress in buccal margin occurred approximately 0.5 mm away from the external surface, the highest stress in lingual margin was observed at approximately 1 mm. Significantly different distribution of stresses was recorded as a function either of the location of the occlusal contact points or of the loading direction. Higher stresses were produced by more obliquely acting load, and when the loaded point was in the vicinity of the cusp tip.