• Title/Summary/Keyword: Microfiltration Membranes

Search Result 123, Processing Time 0.031 seconds

Preparation and characterization of inexpensive submicron range inorganic microfiltration membranes

  • Nandi, B.K.;Das, B.;Uppaluri, R.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • v.1 no.2
    • /
    • pp.121-137
    • /
    • 2010
  • This work presents inexpensive inorganic precursor formulations to yield submicron range symmetric ceramic microfiltration (MF) membranes whose average pore sizes were between 0.1 and $0.4{\mu}m$. Incidentally, the sintering temperature used in this work was about 800 to $950^{\circ}C$ instead of higher sintering temperatures ($1100^{\circ}C$) that are usually deployed for membrane fabrication. Thermogravimetric (TGA) and X-Ray diffraction (XRD) analysis were carried out to evaluate the effect of temperature on various phase transformations during sintering process. The effect of sintering temperature on structural integrity of the membrane as well as pore size distribution and average pore size were evaluated using scanning electron microscopy (SEM) analysis. The average pore sizes of the membranes were increased from 0.185 to $0.332{\mu}m$ with an increase in sintering temperature from 800 to $950^{\circ}C$. However, a subsequent reduction in membrane porosity (from 34.4 to 19.6%) was observed for these membranes. Permeation experiments with both water and air were carried out to evaluate various membrane morphological parameters such as hydraulic pore diameter, hydraulic permeability, air permeance and effective porosity. Later, the membrane prepared with a sintering temperature of $950^{\circ}C$ was tested for the treatment of synthetic oily waste water to verify its real time applicability. The membrane exhibited 98.8% oil rejection efficiency and $5.36{\times}10^{-6}\;m^3/m^2.s$ permeate flux after 60 minutes of experimental run at 68.95 kPa trans-membrane pressure and 250 mg/L oil concentration. Based on retail and bulk prices of the inorganic precursors, the membrane cost was estimated to be $220 /$m^2$ and $1.53 /$m^2$, respectively.

Application of a fouling resistant microfiltration membrane in activated sludge process (막오염 저항성이 우수한 정밀여과막의 생물학적 처리공정 적용)

  • Myoung, Su-Wan;Park, In-Hwan;Kim, In-Chul;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.140-143
    • /
    • 2004
  • Membrane bioreactors (MBRs) used for water purification are based on the association of a bioreactor, within which a culture of microorganisms degrades the polluting compounds, and a membrane filtration separator. The use of a porous barrier usually ensures the disinfection of the effluent.(omitted)

  • PDF

Recent Progress in Zeolite Membrane for Wastewater Treatment: A Review (폐수처리를 위한 제올라이트 막의 최근 연구에 대한 총설)

  • Lee, Joo Yeop;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.227-234
    • /
    • 2022
  • Wastewater is released from leather, textile, paint, wood, or dye processing industries as well as petroleum refining industries. Wastewater from these industries contains water pollutant such as heavy metals and nitrogen compounds and has high chemical oxygen demand (COD). While there various filtering pollutants from wastewater for safe disposal, membrane-based technology is one of the most efficient methods for its high efficiency and low cost. Among various membranes, zeolite membranes gain spotlight for its cost-effectiveness and have undergone a lot of research. This review is focused on recent progress in zeolite membrane for wastewater treatment in following order: i) wastewater treatment, ii) microfiltration membrane, iii) hollow fiber membrane, and iv) ultrafiltration membrane.

Effect of Polymer Structure on Membrane Morphology by Addition of 2-butoxyethanol (2-butoxyethanol 첨가에 따른 고분자 구조가 분리막 구조에 미치는 영향)

  • Son, Ye-Ji;Kim, No-Won
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.377-388
    • /
    • 2011
  • Flat sheet microfiltration membranes were prepared with polysulfone (PSF), polyethersulfone (PES), and polyphenylsulfone (PPS) by an immersion precipitation phase inversion method. In this method, dimethyl formamide (DMF) and polyvinylpyrrolidone (PVP) were used as a solvent and a wetting polymer additive, respectively. 2-butoxyethanol (BE) was used as a nonsolvent additive catalyst to form pore. The morphology of membranes was investigated by scanning electron microscopy and micropermporometer. The permeability of the membranes was evaluated with the flux of pure water. When the BE was added, the pore size of membranes became larger than blank membranes. The changes in the morphology of membrane due to the BE addition depend on polymer structure. All membranes have similar mean pore size and porosity. The mean pore sizes of PSF, PES, and PPS membranes were 0.282, 0.330 $0.308{\mu}m$, respectively. The porosities of PSF, PES and PPS membranes were 68.5, 66.1, 66.4%, respectively. However, the PPS membrane showed higher pore density on surface and narrower pore size distribution than PSF or PES membrane does. As a result, the pure water flux of PPS membrane ($357L/m^2\;hr$) was higher than that of PSF ($196L/m^2\;hr$) or PES membrane ($214L/m^2\;hr$).

Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes (상업용 정밀여과/한외여과막의 특성 분석 및 해수 여과 성능 평가)

  • Choi, Changkyoo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.542-547
    • /
    • 2017
  • This paper was to analyze the membrane characterization of hydrophilicity, surface morphology and membrane chemical anlysis of three commercial microfiltration/ultrafiltration membranes, and evaluate the filtration performance of a seawater to assess the availability for pretreatment of desalination process. From the results of contact angle, Mem-3, fabricated with polyacrylonitrile, was highly hydrophilic. It find out that Mem-3 has more anti-biofouling property. In Field emission scanning electron microscope (FESEM), Mem-1 (polyethylene) and Mem-2 (Polyvinylidenefluoride) showed the sponge-like shape and Mem-3 showed finger-like shape. Membrane chemical analysis by energy dispersive spectrometer (EDS) presented that Mem-2 was mostly fluoride and Mem-3 had s high ratio of N (32.47%) due to the nitrile group. The permeation flowrate per time on suction pressures using deionized water (D.I. water) tends that permeation rate of Mem-3 more increased when the pressure was increased compared to other membranes. From the results of turbidity and total suspended solids (TSS) removal, turbidity of permeate was 0.191 NTU to 0.406 NTU and TSS was 2.2 mg/L to 3.0 mg/L in all membranes, indicating that it was not suitable for the pretreatment of seawater desalination by short-term experiments.

Preparation and Characterization of PP-g-Poloxamer Membranes by UV Irradiation Methods and their Solutes Permeation Behaviors

  • Lee, S. H.;Shim, J. K.;Lee, Y. M.;Ahn, S. H.;Yoo, I. K.;Baek, K. H.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.97-98
    • /
    • 1998
  • 1. Introduction : Polypropylene(PP) membrane is widely used in the field of microfiltration and ultrafiltration. However, the hydrophobicity of PP causes the adsorption of hydrophobic and amphoteric solutes in the feed. Surface modification techniques of membrane through the treatment of hydrophilizing agents, coating of hydrophilic compounds, UV, plasma and high energy irradiation, etc. can have a great effect on propensities to prevent the protein from staining membranes. Among them, the modification to hydophilize membrane surface using UV is very simple and effective. Recently many studies for more effective surface modification have been conducted. Iwata et al. prepared membranes by grafting polyethylene glycol diacrylate macromer(PEGDA) onto polysulfone with plasma using a glow discharge reactor which prevent the oil from staining the membrane. The primary mechanism contributing to the membranes is preventing the oil from directly contacting the surface of the membrane as the PEGDA chains dissolved into emulsion. To evaluate their feasibility for use as a anti-fouling separation membrane, we prepared hydrophilic membranes by UV irradiation method and investigated their characteristics.

  • PDF

Preparation and Characteristics of Polyethersulfone Microfiltration Membranes (폴리에테르술폰 정밀여과막의 제조 및 특성 연구)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.329-337
    • /
    • 2007
  • This is the research about a new method to make the internal separation layer with smallest pore size in polyethersulfone (PES) membrane by adding p-toluenesulfonic acid (TSA) and polyvinylpyrolidone (PVP) to polymeric PES solution. The preparation and morphological characterization of PES sheet membranes containing PVP as a hydrophilic swelling material and TSA as a demixing material were performed. As a result by microflow porometery, the PVP and TSA added PES membranes showed good permeabilities and narrow pore size distributions, comparable to those of the commercial membranes. The concentration of PVP affected the PES characteristics on air permeability and surface structure. The concentration of TSA influenced on pore size distribution but do not affect air permeability. The surface images of FE-SEM shows similar pore size when TSA added or not. However, the cross-section images of FE-SEM show that the TSA added PES membranes have a increase of internal layer thickness with smallest pore size.

Application of Membrane Processes to the Treatment of Wastewaters in Japan

  • Yamamoto, Kazuo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.39-50
    • /
    • 1995
  • The membrane processes that are commonly uscd in water and wastewater treatment are reverse osmosis (Ro), ultrafiltration (UF) and microfiltration (MF), which utilize pressure differentials. There is also nano-filtration (NF), or low-pressure reverse osmosis, which is positioned midway between conventional reverse osmosis and ultrafiltration. Reverse osmosis membranes reject dissolved ions, while ultrafiltration can be used to reject relatively larger molecules, such as protein, polysacchalides and so on. Microfiltration is capable of eliminating particles at submicron level. This paper summarizes the characteristics of MSAS process first, as it is the main membrane process applied to wastewater treatment. Two successful examples of the applications, the cases of individual building reuse system and nightsoil treatment, are then shown. The latest trend of new membrane applications, i.e., immersed-type MSAS is also introduced.

  • PDF