• Title/Summary/Keyword: Microfiltration Membranes

Search Result 123, Processing Time 0.025 seconds

Development of a Numerical Model for Cake Layer Formation Process on Membrane (멤브레인 케이크 레이어 형성 과정 모사를 위한 수치 모델의 개발)

  • Kim, Kyung-Ho;Shin, Jae-Ho;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.35-44
    • /
    • 2011
  • Membrane filtration has become firmly established as a primary process for ensuring the purity, safety and efficiency of treatment of water or effluents. Several researches have been performed to develop and design membrane systems in order to increase the accuracy and performance of the processes. In this study, a lattice Boltzmann method for the cake layer has been developed using particle dynamics based on an immersed boundary method and the cake layer formation process on membrane has been numerically simulated. Case studies including various particle sizes were also performed for a microfiltration process. The growth rate of the cake layer thickness and the permeation flow rate along the membranes were predicted. The results of this study agreed well with that of previous experiments. Effects of various particle diameters on the membrane performance were studied. The cake layer of a large particle tended to be growing fast and the permeation flow going down rapidly at the beginning. The layer thickness of a small particle increased constantly and the flow rate was smaller than that of the large particle at the end of simulation time.

Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst (분리막 및 광촉매의 혼성 정수/하수 처리 공정)

  • Park, Jin Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.143-156
    • /
    • 2018
  • In this review article, hybrid water/wastewater treatment processes of membrane and photocatalyst were summarized from papers published in various journals. It included (1) membrane photoreactor (MPR), (2) fouling control of a membrane coupled photocatalytic process, (3) photocatalytic membrane reactors for degradation of organic pollutants, (4) integration of photocatalysis with membrane processes for purification of water, (5) hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation, (6) effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, (7) hybrid photocatalysis/submerged microfiltration membrane system for drinking water treatment, (8) purification of bilge water by hybrid ultrafiltration and photocatalytic processes, and (9) Hybrid water treatment process of membrane and photocatalyst-coated polypropylene bead.

The effect of thermodynamic stability of casting solution on the membrane inversion process morphology and permeation properties in phase inversion process

  • Kim, Jeong-Hoon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.26-27
    • /
    • 1995
  • Most of synthetic polymeric membranes used in ultrafiltration, reverse osmosis and microfiltration processes are prepared by phase inversion(or phase separation) technique. In this technique, a homogeneous polymer solution is cast into thin film or hollow fiber shape and then immersed into a nonsolvent coagulant bath. The exchange of solvent and nonsolvent across the interface between casting solution and coagu!ant can make the casting solution phase-separate and form a membrane with a symmetric or asymmetric structure. Because of importance of this technique in membrane field, many investigations have been dedicated to elucidate the mechanism of membrane formation by phase inversion technique.[1-10] These investigation have suggested that the structure formation and permeation properties of phase inversion membrane depend on the variables such as the nature and content of casting solution and coagulant, temperature of casting solution and coagulant, and the diffusional exchange rate of solvent and nonsolvent etc. which can be related to the thermodynamic and kinetic properties of the casting system. The variables such as the nature and content of casting solution can also be the important factor affecting the structure formation and permeation property of the phase inversion membrane.

  • PDF

NDMA(N-nitrosodimethylamine) Removal Uising Membrane at Aerobic and Anaerobic Conditions (호기/혐기 조건에서 Membrane을 이용한 NDMA(N-nitrosodimethylamine)제거)

  • Kim, Hui-Joo;Chung, Jin-Wook;Choi, Chang-Kyoo;Kim, Moon-Il
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.417-420
    • /
    • 2008
  • Recently, the interest in NDMA(N-nitrosodimethylamine) has increased due to its recognition as a pollutant by Ontario Ministry of Environment and Energy and California Department of Health Sciences. It is, in fact, one of the DBPs(Disinfection By-products) which appears due to chlorination and is reported to be fatal if exposed continuously to human body. Due to uncertainty in mechanism to remove it, its treatment is not yet carried out. In this experiment, treatment of biological NDMA is carried out by letting it adsorbed on Granular Sludge and then filtering the medium through MF(Microfiltration) and UF(Ultrafiltration) membranes. Granular Sludge is adapted to aerobic and anaerobic conditions for 7 days and the experimental conditions are MLSS of 8000mg/L, COD of 250mg/L, TN of 12.5mg/L, and TP of 2.5mg/L. Several batch tests were carried out and samples were collected with the interval of 1 hour. Samples were measured by LSC(Liquid scintillation counter) after filtering by MF and UF. In batch test with granular sludge the permeate concentrations(removal efficiencies) of NDMA by MF and UF were 71.7ng/L(32.0%) and 62.0ng/L(43.7%) at aerobic state, and 52.0ng/L(49.2%) and 47.6ng/L(58.9%) at anaerobic state, respectively. Hence, UF membrane showed about 10% more removal efficiency than MF and removal efficiency at anaerobic condition was 15% more than that at aerobic condition.

  • PDF

Roles of polypropylene beads and pH in hybrid water treatment of carbon fiber membrane and PP beads with water back-flushing

  • Song, Sungwon;Park, Yungsik;Park, Jin Yong
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The roles of polypropylene (PP) beads and pH on membrane fouling and treatment efficiency were investigated in a hybrid advanced water treatment process of tubular carbon fiber membranes (ultrafiltration (UF) or microfiltration (MF)) and PP beads. The synthetic feed including humic acid and kaolin flowed inside the membrane, and the permeated contacted the PP beads fluidized in the space between the membrane and the module with UV irradiation and periodic water back-flushing. In the hybrid process of UF ($0.05{\mu}m$) and PP beads, final resistance of membrane fouling ($R_f$) after 180 min increased as PP beads increased. The turbidity treatment efficiency was the maximum at 30 g/L; however, that of dissolved organic matters (DOM) showed the highest at PP beads 50 g/L. The $R_f$ strengthened as pH of feed increased. It means that the membrane fouling could be inhibited at low alkali condition. The treatment efficiency of turbidity was almost constant independent of pH; however, that of DOM showed the maximum at pH 5. For MF ($0.1{\mu}m$), the final $R_f$ was the minimum at PP beads 40 g/L. The treatment efficiencies of turbidity and DOM were the maximum at PP beads 10 g/L.

Influence of Membrane Material and Structure on Fouling of a Submerged Membrane Bioreactor (침지형 막 분리 활성슬러지법에서 막의 재질 및 구조가 파울링에 미치는 영향)

  • Choi, Jae-Hoon;Kim, Hyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • This work was performed to evaluate the effect of membrane material and structure on fouling in a submerged membrane bioreactor(MBR). Three types of microfiltration membranes with the same pore size of 0.1 $\mu$m but different materials, polytetrafluoroethylene (PTFE), polycarbonate(PCTE) and polyester(PETE), were used. While PETE membrane exhibited the most rapid flux decline throughout the operation, PCTE and PTFE had a similar tendency with regard to permeability. Difference in permeability between PETE and the other membranes gradually decreased with time, which was probably due to chemical cleaning. The higher TOC rejection of PETE membrane could be attributable to its faster fouling, resulting from a larger amount of foulants to get attached to the membrane in a shorter time. DOC fractionation using a DAX-8 resin showed that the composition of each fraction between the supernatant and permeates did not change significantly with operation time, indicating that membrane hydrophilicity/hydrophobicity was not a dominant factor affecting to MBR fouling in this study. Compared to other membranes, the fouling of PETE membrane was more influenced by pore clogging (irreversible fouling), which would probably contribute to a higher organic rejection of the PETE membrane.

Effect of Periodic $N_2$-back-flushing in Paper wastewater Treatment using Carbon Ceramic Ultrafiltration and Microfiltration Membranes (탄소계 세라믹 한외 및 정밀 여과막으로 제지폐수 처리시 주기적 질소 역세척의 효과)

  • 황현정;박진용
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.8-20
    • /
    • 2002
  • In this study using $N_2$-back flushing, which wwas not the general back-flushing method of membranes, the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes. We could in vestigate effects of $N_2$-back flushing period, transmembrane pressure (TMP)and flow rate and find optimal operating conditions. The $N_2$-back flushing time (BT) was fixed at 40 sec, filtration times (FT) were changed in 4~32 min, TNP in $1.0~3.0kg_f/cm^2$ the flow celocities in 0.53~1.09cm/s. The optimal conditions were discussed in the viewpoints of dimensionless permeate flux ($J/J_0$), toal permeate volume ($V_T$) and resistance of membrane fouling ($R_f$). Optimal back-flushing period was BT/FT=0.167 (FT=8 min ), in which more $V_T$ was obtained than that in BT/FT=0.083 (FT=4 min) which was the most friquent back-flushing condition. Then rising TMP should increase the driving force, and more $V_T$ could be accumulated. And rising flow rate should decrease membrane fouling increase permeate flux, and more $V_T$could be produced. Average rejection rates of pollutants were higher than 95% for turbidity and 45~83% for $COD_{Cr}$, but rejection rates of total dissolved solid (TDS) were lower than 10%.

Effect of Water-Back-Flushing Time on Recovery Efficiency in Ceramic Filtration System for Paper Wastewater Treatment (세라믹 여과 시스템으로 제지폐수 처리시 회수 효율에 대한 물 역세척 시간의 영향)

  • Park Jin Yong
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.329-338
    • /
    • 2004
  • In this study the discharged wastewater from paper manufacturing plant was filtrated by 4 kinds of tubular ceramic microfiltration and ultrafiltration membranes (carbon material) with periodic water-back-flushing, and we tried to find the optimum back-flushing time (BT). As results of water-BT effect for each ceramic membrane, the longer BT was more effective for a membrane having the larger pore size. And we could acquire the most volume of total permeate and the highest recovery efficiency of purified water, Then, the results of permeate flux vs. initial permeate flux during 180 min's operation showed that the longer BT was more effective for longer filtration time (FT) to obtain the higher permeate flux because membrane fouling proceeded deeply at long FT condition. And the optimum BT that founded from the trends of membrane fouling resistances almost accorded with the optimum BT from the trends of permeate flux, too.

Evaluation of RO Process Feasibility and Membrane Fouling for Wastewater Reuse (하수처리수 재이용을 위한 RO 공정의 타당성 및 막오염 평가)

  • Hong, Keewoong;Lee, Sangyoup;Kim, Changwoo;Boo, Chanhee;Park, Myunggyun;An, Hochul;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.289-296
    • /
    • 2010
  • The purpose of this study is to evaluate various pre-treatment methods and proprieties of water quality for wastewater reuse using reverse osmosis (RO) processes. Secondary effluents were sampled from wastewater treatment plants and lab scale pre-treatments and RO filtration test were conducted systematically. Specifically, different types of pre-treatments, such as coagulation, microfiltration and ultrafiltration, were employed to evaluate the removal efficiency of particle and organic matters which may affect the membrane fouling rate. RO process was later added to eliminate trace amounts of remaining organic matters and salt from the raw water for wastewater reclamation. The permeate through the RO process satisfied water quality regulations for industrial water uses. The experimental results showed that the initial fouling tendency differed not only by the feed water properties but also by the membrane characteristics. Membrane fouling was greater for the membranes with large surface roughness, regardless of the hydrophobicity and zeta potentials. Thus both careful consideration of pre-treatment options and proper selection of RO membrane are of paramount importance for an efficient operation of wastewater treatment.

A Study on Continuous Alcohol Fermentation with Cell Recycle by Means of Membrane Separation (막분리를 이용한 미생물 재순환 연속 알콜발효에 관한 연구)

  • 이준형;목영일허병기
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.139-143
    • /
    • 1992
  • One of the objectives of this work is to obtain information relevant to the industrial production of alcohol from sugar. The fermentation of alcohol by a strain of saccharomycess cerevisiae ATCC 24858 was studied In a continuous single-stage process with recycle of the cells via tangential flow microfiltration membranes. The experimental results reported in this study pertain to continuous cultures with total cell-recycle by varying the dilution rate (D=0.3, 0.5, and 0.7 $hr^{-1}$) and glucose concentration (50, 100, 150, and 200g/l sugar solution). Productivity using a repeated cell recycle system was found extremely high, 1.e., over 10 to 29 times higher than that of a smile batch system. When a sugar concentration of 200g/1 at dilution rate, 0.7 hr-1 was used, 83.9g/l ethanol was formed with an ethanol yield of 0.42(82% of theoretical) based on sugars utilized.

  • PDF