• 제목/요약/키워드: Microconvection

검색결과 3건 처리시간 0.021초

Melting Heat Transfer Characteristics of Plural Phase Change Microcapsules Slurry Having Different Diameters

  • Kim, Myoung-Jun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1225-1238
    • /
    • 2004
  • The present study has been performed for obtaining the melting heat transfer enhancement characteristics of water mixture slurries of plural microcapsules having different diameters encapsulated with solid-liquid phase change material(PCM) flowing in a pipe heated under a constant wall heat flux condition. In the turbulent flow region, the friction factor of the present PCM slurry was to be lower than that of only water flow due to the drag reducing effect of the PCM slurry. The heat transfer coefficient of the PCM slurry flow in the pipe was increased by both effects of latent heat involved in phase change process and microconvection around plural microcapsules with different diameters. The experimental results revealed that the average heat transfer coefficient of the PCM slurry flow was about 2~2.8 times greater than that of a single phase of water.

미립자를 포함한 현탁액의 전단율에 의존적인 열전도율 측정 (Measurement of the Shear Rate-Dependent Thermal Conductivity for Suspension with Microparticles)

  • 이성혁;신세현
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1141-1151
    • /
    • 1998
  • An effective thermal conductivity measurement for suspensions of microparticles in oil mixture is conducted in order to evaluate the shear rate-dependence of the thermal conductivity of suspensions. Measurements are made for rotating Couette flows between two concentric cylinders. The rotating outer cylinder is immersed into a constant temperature water bath while the stationary inner cylinder is subject to a uniform heat fluff. Test fluids are made to be homogeneous suspensions, in which neutrally buoyant microparticles ($d=25{\sim}300{\mu}m$) are uniformly dispersed. The present measurements show strong shear-rate dependent thermal conductivities for the suspensions, which are higher than those at zero shear rate. The shear rate dependent thermal conductivity increases with the particle size and volume concentration.4 new model for shear rate-dependent thermal conductivity of microparticle suspensions is proposed; the correlation covers from zero shear rate value to asymptotic plateau value at moderately high shear rates.

전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인 (MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER)

  • 김주한;유승문;박종연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF