• Title/Summary/Keyword: Microcellular foaming injection molding process

Search Result 18, Processing Time 0.026 seconds

Weight Change of Microcellular Plastics by Using nitrogen Gas (질소 가스를 이용한 초미세 발포 고분자 재료의 무게변화)

  • Jeing, Dae-Jin;Cha, Sung-Woon;Yoon, Jae-Dong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.196-201
    • /
    • 2000
  • There is a great demand for reducing the amount of material used in mass-produced plastics parts for material cost constitutes a large percentage of the total cost of a product up to 75% It may be noted that the price of plastics is directly related to the price of petroleum. Material reduction therefore decreases the amount of oil needed for the manufacture of plastics and thus help conserve this natural resource. Therefore microcellular foaming process(MCPs) was studied for solving this problems alternatively in 1980's at M. I. T. Until now in microcellular plastics processes carbon dioxide gas was mainly used for microcellular foaming Because carbon dioxide has more solubility than any other gases such as nitrogen gas or helium gas. The purpose of the this research is measurement of changing of the microcellular plastics' weight by using nitrogen gas in injection molding an comparing weight reduction of microcellular foamed plastics for using carbon dioxide gas with nitrogen gas.

  • PDF

MCPs Product and Process Design of Mixed Materials Using Axiomatic Design (공리적 설계를 이용한 발포제 혼합재료의 MCPs 제품 및 공정 설계)

  • 이경수;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1414-1417
    • /
    • 2003
  • In chemical forming process, mixed materials of LDPE, EVA and forming agent are used. However mechanical properties has been dropping remarkably through this forming process. In this study, Above materials(LDPE, EVA) were used in microcellular foaming injection process. And various effective factors in this process were selected by Axiomatic approach and systematically estimated by DOE(Design of Experiments). As a results, injection type and rate of mixing resins have more influence on forming rate than other factors.

  • PDF

Injection Molded Microcellular Plastic Gear (I) - Process Design for the Microcellular Plastic Gear - (초미세발포 플라스틱 기어에 관한 연구 (I) - 초미세발포 플라스틱 기어의 공정설계 -)

  • Ha Young Wook;Chong Tae Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.647-654
    • /
    • 2005
  • This research Proposes a Process design of injection molded microcellular plastic gears for enhancing the fatigue strength/durability and accuracy of the gears applying thermodynamic instability to microcellular foaming process. To develop the injection molded plastic gears by way of microceliular process, it is absolutely necessary the following two process design. The first is microcellular forming process for enhancing the strength/durability of plastic gears. To be microcellular process succeeded, based on the microcellular principle, mechanical apparatus is designed where nucleation and cell growth are to be generated renewably. The second is the counter pressure process which is mainly fur improving the tooth surface roughness and the accuracy of microcellular gears. For the former process, screw, nozzle and gas equipment are newly designed, and for the latter, counter pressure by nitrogen gas is intentionally brought about into mold cavity when injecting plastic gears. Based on the proposed process design, using gear mold, experiments of injection molding show that, in internal space of plastic gears, microcellular nuclear cells less than 5 lim in diameter have been generated homogeneously via electron microscope photos.

A Study on the Process Optimization of Microcellular Foaming Injection Molded Ceiling Air-Conditioner 4-Way Panel (초미세발포 사출성형을 이용한 천정형 에어컨 4-way 판넬의 공정 최적화에 관한 연구)

  • Kim, Joo-Kwon;Lee, Jung-Hee;Kim, Jong-Sun;Lee, Jun-Han;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.98-104
    • /
    • 2018
  • Deflected 4-way panels of ceiling air conditioners produced by injection molding process have caused dew condensation at the edge of products. In order to prevent this drawback with reducing weight and deformation, this study proposed renovated process adopting microcellular foaming. According to results from 2-sample t-test and analysis of variance(ANOVA), the critical factors affecting weight were melt temperature and injection speed. In addition, the vital effects on deformation were structure at the edge, mold temperature and cooling time. Optimal conditions of these parameters were derived by regressive analysis with CAE and response surface method(RSM), and then applied to an actual design and process stage to analyze performance. As a results, it clearly showed that new process improved process capability as well as reduced both weight and deformation by 18.8% and 71.9% respectively compared to the conventional method.

Effect of Gas amount on Viscosity Change in Microcellular Plastics (가스의 주입량에 따른 초미세 발포플라스틱의 점도 변화)

  • Lee, Jung-Joo;Cha, Sung-Woon;Kim, Seung-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1114-1119
    • /
    • 2004
  • In a foaming process of microcellular plastics (MCPs) with a injection molding, research on the viscosity change that occurs when the gas is injected to the polymer has received little attention despite its importance. The purpose of this paper is to provide the basic data required to determine the processing condition by measuring viscosity changes against the gas injection rates of the blowing agent, and to verify the influence of the viscosity change on the flow condition of polymer inside the mold at the injection process.

  • PDF

Effect of the $CO_2$ on Viscosity Change in Continuous Microcellular Foaming Processing (초미세 발포 연속공정을 위한 $CO_2$ 사용이 재료의 점도변화에 미치는 영향)

  • 문용락;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1394-1397
    • /
    • 2003
  • The first thing in developing injection molding and extrusion with microcellular foaming process is to get a grip on one phase state's rheology of gas and polymer solution. Understanding rheology is essential to design mold or die. and it is so important to control the condition of process. Also, this data is got the utmost out of simulation carrying out. In this paper, we will see the measurement of rheology in one phase that mixed polypropylene which contains talc with carbon dioxide of super critical fluid state, and will compare its result with the simulation result.

  • PDF

The Insulation Property of Microcellular Injection Molding Plastics (초미세 발포 사출 성형품의 단열 특성)

  • Lee, Jung-Hyun;Hong, Soon-Kug;Kim, Ji-Hyun;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.263-268
    • /
    • 2001
  • MCPs means Micro Cellular Plastics. The micro-cells are generated in the products by the difference of dissolution through the pressure drop after super critical fluid of CO2 or N2 dissolves into polymer. We have developed injection molding process adopting MCPs and applied it to a broad range of injection molded thermoplastic materials and applications. It can prevent the leakage of impact strength and increase the thermal conductivity, moreover regulate the thermal conductivity. Then we can develop the high strength foaming plastics. Also, it can be gained a competitive advantage by utilizing its processing benefits, e.g. the lightweight products and significant reductions in material consumption.

  • PDF