• Title/Summary/Keyword: Microcapsulation

Search Result 8, Processing Time 0.023 seconds

The stabillty of Double-Capsulated Retinol on O/W Eulsion

  • Park, Dong-Soon;Lee, Ok-Sub;Kang, Hak-Hee;Kim, Jong-Il
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.24-38
    • /
    • 1997
  • Using the all-trans-retinol which is double-capsulated with matrix, we investigated its stability and the change of the epidermal thickness. The proprietary MDC comprise two steps of capsulation of retinol, i.e., primary microcapsulation with collagen and then secondary capsulation with gellan gum. We compared the activity of all-trans-retinol in various forms such as (1) simply in O/W, (2) in W/O emulsion, (3) in primary capsulted form in O/W emulsion, or (4) in MDC in O/W emulsion. After storage at 45$^{\circ}C$ for 4 weeks, retinol in MDC in O/W emulsion retained 92% of the activity compared to the standard material upon HPLC analysis, whereas the primary capsule gave 70%, the O/W emulsion form 47% and the W/O emulsion 78%. The retinol in MDC in O/W induced the siginificant increase in epidermal thickness compared to the vehicle.

  • PDF

Microcapsulation Technique of the Black and White Particles Suspension for Electrophoretic Display

  • Kim, Chul-Am;Jeong, Meyoung-Ju;Ahn, Seong-Deok;Kang, Seung-Youl;Lee, Yong-Eui;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.509-511
    • /
    • 2003
  • We present a microcapsule manufacturing technique, which contains a polymer coated white $TiO_2$ and black particles suspension as the core material for a electrophoretic display ink, via the in-situ polymerization method using melamine? formaldehyde as a wall material. The obtained capsules have $50 {\sim} 300 {\mu}m$ of the diameter range. They show a good mechanical strength and thermal and optical property. We fabricate the microcapsules to the single layer to test the black/white electrophoretic display application.

  • PDF

An Edible Alginate Microcapsulation of Entomopathogenic Nematode, Steinernema carpocapsae (알지닌캡슐을 이용한 곤충병원선충(Steinernema carpocapsae)의 섭식유도형 제제화 기술)

  • 김용균;이승화;유용만;한상찬
    • Korean journal of applied entomology
    • /
    • v.42 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • Field application of the entomopathogenic nematode, Steinernema carpncapsae, is limited by its susceptibility to UV irradiation and desiccation especially at leaf spray control. This study was conducted to develop the control technique using alginate biocapsulation of the nematodes against the beet armyworm, Spodoprera exigua and the tobacco cutworm, Sp. litura that are normally infesting hosts above ground level. The alginate capsules including infective juveniles gave significant feeding toxicities to the larvae of the two lepidopteran species. The lethality followed a typical sigmoid dose-mortality pattern with increase of the nematode densities embedded in the capsules. Moisture content in the capsule was critical to the survival of the infective juveniles. More than 80% nematodes could survive above 10% moisture content remained in the capsule. Remaining moisture content within the capsule was dependent on relative humidity, ambient temperature, and capsule size, but not on citric acid reaction time during capsule formation. More than 80% of infective juveniles in the alginate capsules could survive in distilled water at 15$^{\circ}C$ for 60 days. When these nematode capsules containing welsh onion extract as another phagostimulant were applied on the 3rd instar larvae of Sp. exigua infesting peanut plants, they resulted in about 90% control efficacy. These results indicate that the alginate capsulation can be used for leaf-spray agent of the entomopathogenic nematodes as well as for improved storage purpose.

A Design of the Spray-Freeze Dryer for the Production of pulmonary inhalation Powders (호흡식 분말의약품 제조용 분무동결건조기 설계에 관한 연구)

  • Park, S.J.;Song, C.S.;Han, Y.S.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1323-1328
    • /
    • 2004
  • This paper shows the study on the design of the spray-freeze dryer for the production of the pulmonary inhalation powders. Powder production and handling has been an integral part of pharmaceutical processing because of the wide use of oral dosage forms. There are a few commonly used powder preparation methods including mechanical milling, precipitaion, spray drying, freeze drying, and so on. In general, methods available for preparing inhalation powders are limited due to certain inhalation powder's sensitive nature to the processing environments. This is particularly true for preparing dry powder aerosols where the aerodynamic particle size$(<5{\mu}m)$ and the size distribution are pivotal. Supercritical fluid antisolvent and spray freeze drying have recently emerged as promising techniques for producing powders for use in microcapsulation. However, the aerosol applications of these powders are yet to be explored. The purpose of this study is to test the feasibility of using spray freeze-dried pulmonary inhalation powders for aerosolization.

  • PDF

In Vitro Stability of β-galactosidase Microcapsules

  • Kwak, H.S.;Kwon, S.H.;Lee, J.B.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1808-1812
    • /
    • 2002
  • The present study was carried out to examine the efficiency of microcapsules and a stability of lactase in vitro in the simulated gastric and intestinal conditions. As a coating materials, medium-chain triacylglycerol (MCT) and polyglycerol monostearate (PGMS) were used. The highest efficiency of microencapsulation was found in the ratio of 15:1 as coating to core material with both MCT (91.5%) and PGMS (75.4%). In a subsequent experiment, lactose content was measured to study a microcapsule stability. Lysis of microcapsules made by MCT in simulated gastric fluid was proportionally increased such as 3% in pH 5 and 11% in pH 2 for 20 min incubation. In the case of PGMS microcapsulation, 11-13% of lactose was hydrolyzed at 20 min in all pHs and also very little amount (less than 3%) of lactose was hydrolyzed after 20 min in all pHs. The highest percentages of lactose hydrolysis in MCT and PGMS microcapsules were 68.8 and 60.8% in pHs 7 and 8 during 60 min, respectively. Based on our data, the lactase microcapsules seemed to be stable when they stay in the stomach, and hydrolyzed rapidly in small intestine where the bile acid was excreted.

A Study on the Spray Freeze Dryer for Extracting Valuable Material of the Deep Seawater (해양심층수 물질추출용 분무동결건조기에 관한 연구(1))

  • PARK SEONG-JE;HONG YONG-JU;KIM HYO-BONG;KIM HYEON-JU;SHIN PHIL-KWON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1-6
    • /
    • 2004
  • This paper shows the study on the design and another applications of the spray-freeze dryer for the production of valuable material powders. Powder production and handling has been an integral part of material extracting processing and pharmaceutical processing because of the wide use of oral dosage forms. There are a few commonly used powder preparation methods including mechanical milling, precipitaion, spray drying, freeze drying, and so on. In general, methods available for preparing inhalation powders are limited due to certain inhalation powder's sensitive nature to the processing environments. This is particularly true for preparing dry powder aerosols where the aerodynamic particle size($<5{\mu}m$) and the size distribution are pivotal. Supercritical fluid antisolvent and spray freeze drying have recently emerged as promising techniques for producing powders for use in microcapsulation. However, the aerosol applications of these powders are yet to be explored. The purpose of this study is to test the feasibility of using spray freeze-dried valuable material powders for aerosolization.

  • PDF

Improved Micrometric Properties of Pyridostigmine Bromide, a Highly Hygroscopic Drug, through Microenccapsulation (고인습성 약물인 피리도스티그민의 마이크로캅셀화에 의한 분체 특성의 개선)

  • Kim, Dae-Suk;Kim, In-Wha;Chung, Suk-Jae;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • The purpose of this study is to microencapsulate a highly hygroscopic drug, pyridostigmine bromide (PB), with a waterproof wall material, in order to increase the flowability of the drug particles. Polyvinylacetaldiethylaminoacetate (AEA), Eugragit E and Eugragit RS were examined as the wall materials. Microcapsules containing PB were prepared by the evaporation technique in an acetone/liquid paraffin system using aluminum tristearate as a core material, and evaluated for drug encapsulation efficiency, surface morphology, particle size and drug dissolution. The encapsulation of PB in the wall material was almost complete. Among the wall materials examined, AEA exhibited the most excellency in shape, surface texture, flowability, size distribution of microcapsules. Above results suggest that AEA would be a potential wall material for microcapsulation of highly hygroscopic drugs, such as PB. Through microencapsulation with AEA, inconvenience of handling of PB powders encountered in the process of weighing and packing the powders to tableting die or capsule body could be greatly improved.

Preparation and application of the functionalized Shampoo with core-shell microcapsule (코아-쉘 마이크로 캡슐을 이용한 기능성 샴푸의 제조 및 응용)

  • Seo, Mi-Young;Kim, Eun-Ji;Kim, In-Kyoung;Choi, Seong-Ho
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • In this study, we prepared the functionalized Shampoo with three-type functionalized microcaples which were synthesized by microcapsulation, respectively. In detail, the functionalized microcapsule was included such as (1) the functionalized microcapsule with core-menthol and shell-melamine resin and (2) the functionalized microcapsule with core-menthol and shell-lecithin, and (3) the functionalized microcapsule with core-cinnamon oil and shell-lecithin, respectively. The size and morphology of the prepared microcapsules was evaluated via Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). From these results, the prepared microcapsules with size of 0.1~0.2 ㎛ and spherical morphology was confirmed. Furthermore, we applied the prepared Shampoo to treat hair. As results we confirmed that the scalp temperature was decreased about 3~4 ℃ compared to no treatment. This result may be considered that the core compounds are vaporize when the functionalized Shampoo is treated on scalp. We will determine the change of scalp pore, diameter of hair, and etc during treatment of the functionalized Shampoo.