• 제목/요약/키워드: Microbial polyester

검색결과 14건 처리시간 0.026초

Change of Fine Structure of Aliphatic Polyester fiber by strectching

  • 홍기정;박수민
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1997년도 춘계학술발표회 논문집
    • /
    • pp.328-332
    • /
    • 1997
  • Hot stretching focused on the improvement of properties of poly(L-lactic acid) fiber. Some aliphatic polyesters are biodegradable under microbial attack and the new unique applications are expected. Generally, these materials have a somewhat low melting temperature and low mechanical properties compared with the aromatic polyesters. In this study, melt-spinning of poly(L-lactic acid) was conducted. We investigated effects of the stretching and the molecular orientation of aliphatic polyester fibers on the change of fine-structure. Glass transition temperature, molecular orientation and crystallinity increased according to the increase of stretching ratio.

  • PDF

Ciprofloxacin을 이용한 폴리에스테르 섬유의 항미생물 가공 (Anti-microbial Finishing of Polyester Fibers using Ciprofloxacin Antibiotics)

  • 정용식;정민호;장형관;차세연;임대영
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2008년도 제38차 학술발표대회
    • /
    • pp.19-21
    • /
    • 2008
  • The quinolone antibiotics Ciprofloxacin shows broad antimicrobial spectrum, heat stability, limited water solubility, and similar structure and size to disperse dyes. The object of this study is to develop the infection-resistant medical extile material by applying Ciprofloxacin to a series of polyester materials such as PET, PDO, PLA, and PGA. All the Ciprofloxacin compound polyester materials demonstrated the superior antimicrobial activity to the organisms S. aureus and E. coli.

  • PDF

호기성 침지형 생물막법을 이용한 Polyester 감량폐수의 처리 (Treatment of Polyester Weight Loss Wastewater by Aerated Submerged Biofilm Process)

  • 박종웅;김대희
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.85-90
    • /
    • 1997
  • The objective of this study was to investigate biodegradation of TPA(terephthalic acid) and EG (ethylene glycol), treatment efficiency of polyester weight loss wastewater and microbial characteristics by aerated submerged biolfilm(ASB) p.rocess. In a batch reactor, pH increased from 7.0 to 8. 5 in the biodegradation of TPA. Whereas, in case of EG, decreased from 7.0 to 5.2. COD concentration rapidly decreased within 24hr in the biodegradation of TPA and EG. COD removal velocity constant(k) were 0.065-0.088 hr$^{-1}$. The biodegradation velocity of TPA was 1.4 times faster than that of EG. The ratio of suspended biomass to the total biomass in the reactor was 18.3-33.3%, increased as a high ratio of EG content. Biofilm thickness, biofilm dry density and attached biomass were 346-432 $\mu$m, 41.8-61.9 mg/cm$^3$, 1.45-2.67 mg/cm$^2$, respectively. There values increased as a high ratio of TPA content. In the hydraulic retention time of 36 hr, organic loading rate of 4 kgCOD/m$^3\cdot$ day and packing ratio of 70%, the effluent concentrations of TCOD, SCOD in a continuous flow reator were 1,388 mg/l, 147 mg/l and removal efficiencies were 77%, 97.6%, respectively.

  • PDF

Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment

  • Lee, Ik-Sang;Kwon, Oh-Hyeong;Wan Meng;Kang, Inn-Kyu;Yoshihiro Ito
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.374-378
    • /
    • 2004
  • The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electro spinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1 %, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electro spun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.

표면 개질을 통한 미생물합성 폴리에스테르의 효소분해속도 조절 (Control of Enzymatic Degradability of Microbial Polyester by Surface Modification)

  • 이원기
    • 한국환경과학회지
    • /
    • 제11권12호
    • /
    • pp.1315-1320
    • /
    • 2002
  • Since the enzymatic degradation of microbial poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (P(3HB-co-3HV)) initially occurs by a surface erosion process, a degradation behavior could be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma gas discharge and blending techniques were used to modify the surface of microbial P(3HB-co-3HV). The surface hydrophobic property of P(3HB-co-3HV) film was introduced by CF$_3$H plasma exposure. Also, the addition of small amount of polystyrene as a non-degradable polymer with lower surface energy to P(3HB-co-3HV) has been studied. The enzymatic degradation was carried out at 37 $^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. Both results showed the significant retardation of enzymatic erosion due to the hydrophobicity and the enzyme inactivity of the fluorinated- and PS-enriched surface layers.

진공포장한 육류제품의 열가공처리와 포장재질에 따른 저장중의 미생물성장 효과 (Effect of Thermal Processing and Packaging Materials on Microbial Growth of Vacuum Packaged a Meat Product during Storage)

  • 이종현
    • 한국포장학회지
    • /
    • 제4권1호
    • /
    • pp.33-40
    • /
    • 1997
  • The microbial growth of fresh, vacuum packaged, cook-in-bag uncured beef patties was determined in two film structures, a commercial (PE/EVOH), and super barrier ($SiO_2$ coated polyester) material. Packaged samples were cooked to internal temperature of 71 and $82^{\circ}C$ for 30 minutes, and stored in temperature abused ($23{\pm}2^{\circ}C$) and refrigerated storage ($4-6^{\circ}C$). Barrier properties had a significant effect (p<0.001) on aerobic and mesophilic growth in the abused condition. Cooking temperatures had a statistically significant effect (p<0.05) on aerobic growth in the refrigerated condition. The growth of anaerobes and psychrophiles were not significantly effected by either variables. Storage times had the most significant effect (p<0.001) for all groups of microorganisms. The physical properties of the commercial film (strength, thickness, and shrinkage) were changed after exposure to thermal treatment, while the super barrier package had actually no change.

  • PDF

Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater

  • Kim, Taeyoung;Kang, Sukwon;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2171-2178
    • /
    • 2016
  • Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer (e.g., for $O_2/H^+/ions$) than the Nafion PEM; in the case of oxygen mass transfer coefficient ($k_o$), a rate of $50.0{\times}10^{-5} cm{\cdot}s^{-1}$ was observed compared with a rate of $20.8{\times}10^{-5}cm/s$ in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen ($D_O$) for PC ($2.0-3.3{\times}10^{-6}cm^2/s$) was lower than that of the Nafion PEM ($3.8{\times}10^{-6}cm^2/s$). The PC was found to have a low ohmic resistance ($0.29-0.38{\Omega}$) in the MFC, which was similar to that of Nafion PEM ($0.31{\Omega}$); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC ($104.3{\pm}15.3A/m^3$) compared with MFCs with Nafion PEM ($100.4{\pm}17.7A/m^3$), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.

생분해성 가소제에 의한 미생물 폴리에스테르의 내충격성 및 열안정성 증진에 대한 연구 (A Study on the Improvement in Impact Resistance and Thermal Stability of Microbial Polyester by Biodegradable Plasticizer)

  • 최재신;김소현;이택승;박원호
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.199-202
    • /
    • 2001
  • 현재 플라스틱에 의한 환경오염이 사회문제로까지 확대되면서 이를 해결하기 위한 한가지 대책으로 분해성 플라스틱의 개발이 절실히 요구되어 전세계적으로 많은 연구가 이루어지고 있다. 생분해성을 가지는 미생물 폴리에스테르 중에서 가장 대표적인 poly(3-hydroxybutyrate), PHB는 우수한 역학적 성질을 가지며, 또한 천연고분자 중에서 융점을 가지는 유일한 열가소성 재료이다. (중략)

  • PDF

전기방사에 의한 미생물 합성 생분해성 고분자 섬유의 Oil 흡수 (Oil Absorbencies of Fibers of Biodegradable and Microbial Polymers Prepared by Electrospinning Method)

  • 정의습;이원기;박찬영;민성기;장성호
    • 한국환경과학회지
    • /
    • 제22권2호
    • /
    • pp.243-249
    • /
    • 2013
  • Fibers of microbial polyesters, poly(3-hydroxy butyrate) (PHB) and poly(3-hydroxy butyrate-co-3-hydroxy valerate) (HB-co-HV) were prepared by electrospinning method. The obtained fibers were evaluated by differential scanning calorimetry, scanning electron microscopy, and oil absorption. The formation of fibers was strongly dependent on a concentration of solution. At a low concentration, the fibers contained beads which is from aggregation of polymer due to short evaporation time. The fine fibers with $2-5{\mu}m$ diameter were obtained at 20 wt% concentration. The contact angle measurement showed that the fiber had higher water contact angle than the film due to the lotus-like effect. Oil absorbency showed that the fiber had higher than the film. Specially, the HB-co-HV fiber which was spinned from 20 wt% absorbed 65% oil which is much higher than that of a normal polypropylene-based oil paper.

옥수수 바이오매스를 함유한 폴리에스터 필름의 물리 화학적 특성과 생분해 특성에 대한 콜드 플라즈마 처리의 영향 (Cold Plasma Treatment Effects on the Physicochemical and Biodegradable Properties of a Corn Biomass-containing Polyester Film)

  • 송아영;오윤아;오세준;민세철
    • 한국식품과학회지
    • /
    • 제47권2호
    • /
    • pp.224-232
    • /
    • 2015
  • CP 처리의 CBPE 필름의 물리화학적 특성 및 생분해 특성에 대한 영향을 연구하였다. CP 처리는 CBPE 필름의 인장 강도, 신장률, 그리고 광투과도와 같은 물리적 특성에는 영향을 주지 않았으나, air-CP 처리는 CBPE 필름의 유연성, 수분 방벽 특성, 그리고 인쇄적성을 향상시켰다. Air-CP 처리는 저장 중 CBPE 필름 표면의 조도와 O와 N 원소를 포함한 작용기의 양을 증가시켰고, 인쇄적성, 열분해성, 그리고 미생물 분해성을 향상시켰다. 본 연구에서 CP 처리 후 CBPE 필름 표면에서 보여지는 노화 현상을 XPS 결과를 통해 확인할 수 있었다. 본 연구는 CP 처리가 CBPE 필름을 비롯하여 다른 생분해성 식품 포장재의 물리적 특성과 생분해성을 향상시킬 수 있는 기술로서 적용될 수 있다는 가능성을 보여주었다.