• Title/Summary/Keyword: Microbial pesticide

Search Result 88, Processing Time 0.036 seconds

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

Chitinase을 생산하는 곤충병원미생물 Metarhizium anisopliae HY-2(KCTC 0156BP)의 토양해충 생물검정

  • Seo, Eun-Yeong;Son, Gwang-Hui;Sin, Dong-Ha;Kim, Gi-Deok;Park, Du-Sang;Park, Ho-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.469-472
    • /
    • 2002
  • Solid state fermentation was performed for the production of entomopathogenic fungus Metarhizium anisopliae HY-2 using wheat bran media containing rice bran. Fungal growth in a solid state fermentation system was estimated by viable cell count, spore count, and mycelial biomass. It was used chemical method measuring N-acetyl-glucosamine (chitin) content for estimating of mycelial biomass. In static flask culture, viable cell reached 2.40 ${\times}$ $10^8$ cfu/g at 23 days of culture at $27^{\circ}C$ and then mycelial biomass was 41.59 mg/g. Specific growth rate(${\mu}$ max) was 0.0418 $h^{-1}$ between 3 and 9 days when estimated by viable cell count and was 0.00976 $h^{-1}$ between 9 and 17 days when N-acetylglucosamine content was measured. Viable cells reached 1.12 ${\times}$ $10^8$ cfu/g in polypropylene-bag at 28 days of culture at $27^{\circ}C$. Formulated microbial pesticide containing M. anisopliae HY-2 were tested their bio-activity against Chestnut Brown Chafer (Adoretus tenuimaculatus). The protection rate of the liquid culture showed 13 ${\sim}$ 26 % with 1st to 3rd instar, and spore suspension of M. anisopliae HY-2 showed 56 ${\sim}$ 64%. Conidia produced by large scale solid-state fermentation showed 20 ${\sim}$ 27 % activity 60 ${\sim}$ 64 % with M. anisopliae HY-2.

  • PDF

Induction of Systemic Resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1

  • Elsharkawy, Mohsen Mohamed;Shimizu, Masafumi;Takahashi, Hideki;Ozaki, Kouichi;Hyakumachi, Mitsuro
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.193-200
    • /
    • 2013
  • Trichoderma asperellum SKT-1 is a microbial pesticide that is very effective against various diseases. Our study was undertaken to evaluate T. asperellum SKT-1 for induction of resistance against yellow strain of Cucumber mosaic virus (CMV-Y) in Arabidopsis plants. Disease severity was rated at 2 weeks post inoculation (WPI). CMV titre in Arabidopsis leaves was determined by indirect enzyme-linked immunosorbent assay (ELISA) at 2 WPI. Our results demonstrated that among all Arabidopsis plants treated with barley grain inoculum (BGI) of SKT-1 NahG and npr1 plants showed no significant reduction in disease severity and CMV titre as compared with control plants. In contrast, disease severity and CMV titre were significantly reduced in all Arabidopsis plants treated with culture filtrate (CF) of SKT-1 as compared with control plants. RT-PCR results showed increased expression levels of SA-inducible genes, but not JA/ET-inducible genes, in leaves of BGI treated plants. Moreover, expression levels of SA- and JA/ET-inducible genes were increased in leaves of CF treated plants. In conclusion, BGI treatment induced systemic resistance against CMV through SA signaling cascade in Arabidopsis plants. While, treatment with CF of SKT-1 mediated the expression of a majority of the various pathogen related genes, which led to the increased defense mechanism against CMV infection.

Effect of Repeated Application of IBP on the Degradation of Pesticides in Flooded Soil (IBP의 반복처리(反復處理)가 담수토양중(湛水土壤中) 농약(農藥)의 분해(分解)에 미치는 영향(影響))

  • Song, Byeong-Hun;Jeong, Young-Ho;Park, Young-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.1
    • /
    • pp.65-70
    • /
    • 1982
  • This experiment was conducted to see the effect of repeated application of IBP granular formulation(17%, 0,0-diisopropyl-S-benzyl thiophosphate) on the biodegradation of IBP and diazinon〔0,0-diethyl 0-(2-isopropyl-4-methyl-5-pyrimidinyl) phosphorothioate〕 in silt loam soil with 2.1% organic matter under flooded condition. The persistence of IBP in the soil was shortened by increasing the frequencies of application of the chemical. Enhanced degradation ability in the soil caused by repeated application of IBP was prolonged about 53 days, while the ability did not influence diazinon persistence in the soil. The half-lives of IBP in sterilized soil autoclaved at $121^{\circ}C$ for 30 minutes were about 3 times longer than those in viable soil, suggesting that microbial process was a major factor for IBP degradation in the soil. The total colony number of soil microbes showed little difference between the soils with and without repeated application of IBP. A possible concern of specific soil microorganisms on the pesticide degradation in soil was discussed.

  • PDF

Quality Evaluation of Fresh-cut Market Products by Season (계절에 따른 시판 신선 편이 샐러드 제품의 품질 평가)

  • Cho, Sun-Duk;Youn, Soo-Jin;Kim, Dong-Man;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.3
    • /
    • pp.295-303
    • /
    • 2007
  • As a result of life-style changes, consumer's concerns of food have shifted from calories and nutrition to health and convenience. Fresh-cut products are one such new direction for fruit and vegetable consumption. In this study, the vitamin C, mineral, and pesticide contents of various fresh-cut products were analyzed. According to sensory evaluations, the key reason for a lower than expected overall acceptability of many fresh-cut products is that they are likely to have browning and can easily lose their freshness. Also, the sensory evaluation showed that shriveling, the degree of browning, softening around the cut edge, and off-flavors were the primary factors affecting the quality of fresh-cut products. As a nutritional factor of quality, vitamin C content was not practical with regard to fresh-cut lettuce because the level was very low. For product safety, residual pesticides were detected in the fresh-cut products, but the results showed that all items were under permitted levels and considered safe. In evaluation of the microbial levels of the fresh-cut market products, the levels of viable cells, mold, yeast, coliform bacteria, and enterobacteriaceae were not significantly different based on the summer and winter seasons. The levels of S. aureus and Listeria spp. in the products were higher during the summer season than the winter.

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Control of Pepper Anthracnose Caused by Colletotrichum acutatum using Alternate Application of Agricultural Organic Materials and Iminoctadine tris + thiram (유기농업자재와 유기합성 살균제(Iminoctadine tris + thiram) 교호살포에 따른 고추 탄저병 방제 효과)

  • Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Kim, Jung-Hyun;Kim, Seok-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.428-439
    • /
    • 2015
  • Pepper anthracnose caused by Collectotrichum acutaum has been known as one of the most damaging diseases of pepper, which has reduced not only yield but also quality of pepper produce almost every year. This study was conducted to develop control strategy against pepper anthracnose by alternate application of agricultural organic materials and chemical fungicides. The alternate application effect of agricultural organic materials and chemical fungicides for controlling pepper anthracnose were examined in vitro and in the field. First, thirteen microbial agents and twenty two agricultural organic materials were screened for antifungal activity against C. acutatum through the dual culture method and bioassay. As a result, one microbial agent (Bacillus subtilis QST-713) and three agricultural organic materials (sulfur, bordeaux mixture, marine algae extracts) were found to show high inhibition effect against C. acutatum. In the field test, when Iminoctadine tris+thiram, a chemical fungicide for controlling pepper anthracnose, was sprayed, it reduced disease incidence by 89.5%. Meanwhile Sulfur, bordeaux mixture, copper, marine algae extracts and Bacillus subtilis QST-713 showed low disease incidence at the range of 33.1~81.0%. However, when Iminoctadine tris+thiram and agricultural organic materials(bordeaux mixture, marine algae extracts) were applied to pepper fruits alternately two times at 7 days interval, there was a 81.7 and 87.1% reduction in disease, respectively. Consequently, the alternate spray of chemical fungicide (Iminoctadine tris+thiram) and agricultural organic materials (bordeaux mixture, marine algae extracts) could be recommended as a control method to reduce the using amount of chemical fungicide.

Eco-Friendly Organic Pesticides (EFOP)-Mediated Management of Persimmon Pests, Stathmopoda masinissa and Riptortus pedestris (식물 및 미생물 유래 유기농자재 살충효과: 단감해충 감꼭지나방, 톱다리개미허리노린재)

  • Kim, Jong Cheol;Yu, Jeong Seon;Song, Min Ho;Lee, Mi Rong;Kim, Sihyeon;Lee, Se Jin;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.319-327
    • /
    • 2016
  • Chemical pesticides have been used to control persimmon pests, however the overuse of the pesticides caused insect resistance, followed by failure in pest management and residual problems. Herein we investigate the potential of eco-friendly organic pesticides (EFOP) on the control persimmon pests, Stathmopoda masinissa (persimmon fruit moth) and Riptortus pedestris (bean bug). Ten commercially available plant-derived organic pesticides and one microbial pesticide were sprayed on the target insects in laboratory conditions. The chemical pesticide, buprofezin+dinotefuran wettable powder served as a positive control. In the first bioassay against persimmon fruit moth, alternatively Plutella xylostella larvae were used due to the lack of persimmon fruit moth population from fields, and three organic pesticides showed high control efficacy, such as pyroligneous liquor (EFOP-1), the mixture of Chinese scholar tree extract, goosefoot and subtripinnata extracts (EFOP-2) and Bacillus thuringiensis subsp. aizawai NT0423 (EFOP-11). When the three selected organic pesticides were treated on the persimmon fruit moths, the EFOP-2 treatment showed the highest control efficacy: 27.7% (5 days), 13.3% (7 days) and 6.7% (10 days) of survival rates. In the bioassay against bean bugs, the mixture of Chinese scholar tree, goosefoot and subtripinnata extracts (EFOP-2 and EFOP-9) and the extracts of sophora and derris (EFOP-10) showed high control efficacy, particularly the highest in the treatment of EFOP-2: 20.0% (5 days) and 16.7% (10 days) of survival rates. These results suggest that the mixture of Chinese scholar tree, goosefoot and subtripinnata extracts (EFOP-2) has high and multiple potential in the management of the persimmon pests.

Effect of Pesticides on Change of Soil Microflora in Flooded Paddy Soil (농약(農藥)이 담수토양중(湛水土壤)중 미생물상(微生物相) 변화(變化)에 끼치는 영향(影響))

  • Han, Seong-Soo;Kim, Seong-Jo;Baek, Seung-Hwa;Choi, Hyo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • This study was conducted to estimate influences of pesticides such as carbofuran[2,3-dihydro-2,2-dimethylbenzofuran-7-yl methyl carbamate] as an insecticide, and pyrazolate [4-(2,4-dichlorobenzolyl)-1,3-dimethyl-5-pyrazolyl-1,3-dimethyl-5-pyrazolyl-p-toluensulfonate], pyrazolate+pretilachlor [2-chlor-2,6-diethyl-N-(n-propoxyethyl) acetanilied] as herbicides on change in numbers of soil microorganisms and pH in planted and unplanted flooded rice paddy soils. The results of weekly investigated change of pH and populations of total bacteria, gram negative bacteria, anaerobic bacteria and fungi after treatments of pesticides were as follows : The change of pH in rice-planted soil gradually decreased in a matter of weeks after treatment with pesticide and the pH increased again from the sixth week, but no change of pH could be observed in nonplanted soil. The total numer of bacteria in the treated plots were slightly less than in the control plot, and the numbers decreased with increasing application rates of pesticides. But the microbial population increased in a matter of days after treatment with pesticide. Number of the gram negative bacteria until the sixth week after treatment of pesticide were fewer than control. The number in the carbofuran-treated plot decreased after a weeks after treatment, but numbers in plots treated with pyrazolate and pyrazolate+pretilachlor increased. The number of anaerobic bacteria in the treated plots were few by comparison with the untreated control, but the number increased after a weeks after treatment with pesticides. The populations of fungi in the carbofuran-treated plot were similar by comparison with the untreated control. The populations in the plots treated with pyrazolate and pyrazolate+pretilachlor decreased in 4 to 5 weeks with increase of application rate, but afterwards increased.

  • PDF

Effects of Pesticides on Soil Microflora - Changes in Soil Microflora by Application of Organochlorine Pesticides - (농약(農藥)이 토양미생물상(土壤微生物相)에 미치는 영향(影響) -유기염소계(有機鹽素系) 살균제(殺菌劑) 및 살충제살포(殺蟲劑撒布)에 따른 전토양미생물상(田土壤微生物相)의 변동(變動)-)

  • Yang, Chang-Sool
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.299-306
    • /
    • 1984
  • The influences of applications of organochlorine insecticide (HCH: Hexachlorocyclohexane, 10 ppm), fungicide (TPN: Tetrachloroisophthalonitrile, 40 ppm) and manure ($3Kg/m^2$) each or together on changes in soil microflora for consecutive years were investigated in the experimental field plots. The insecticide had a little effect on soil microbial numbers. In particular, the number of total bacteria, Gram-negative bacteria and fungi were gradually increased at the latter stage of the consecutive application, but the number of sporeforming bacteria reduced. The fungicide reduced the counts of sporeforming bacteria, actinomycetes and fungi respectively, whereas increased prominently the counts of total bacteria and Gram-negative bacteria. TPN-resistant bacteria, particulary TPN-resistant Gram-negative bacteria were gradually accumulated by the long-term application of TPN, and further the number of TPN-resistant total bacteria and the of TPN-resistant Gram-negative bacteria correlated fairly well during all the period. The influences of combined applications of both HCH and TPN on the number of soil microorganisms were equal to the respective sums of the effects of single application of each pesticide. The combined application of manure and these pesticides elevated the increasing extents of microbial numbers, while weakened the detrimental efforts of these pesticides on microbial numbers. These data suggest that the long-term application of these materials have resulted in the remarkable changes of composition of soil microflora.

  • PDF